Advertisement

An efficient method for subband calculations of cylindrical nanowire transistors using a Fourier harmonics expansion

  • Geon-Tae Jang
  • Sung-Min HongEmail author
Article
  • 24 Downloads

Abstract

We propose an efficient method for subband calculations of cylindrical nanowire transistors with an arbitrary channel orientation. To perform the subband calculation efficiently, the wavefunctions are expanded using Fourier harmonics. It is confirmed that the use of an approximate isotropic effective mass introduces an error in the subband calculation due to the incorrectly calculated potential energy. A comparison with the results obtained in the Cartesian coordinate system confirms the accuracy of our method. Moreover, the simulation time required to obtain the self-consistent solution is significantly reduced.

Keywords

Semiconductor device simulation Subband calculation Nanowire transistor Self-consistent Schrödinger–Poisson solver Fourier harmonics expansion 

Notes

Acknowledgements

This research was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2018R1D1A1B07048277). It was also supported by GIST Research Institute (GRI) grant funded by the GIST in 2018.

References

  1. 1.
    Chang, L., Tang, S., King, T.-J., Bokor, J., Hu, C.: Gate length scaling and threshold voltage control of double-gate MOSFETs. In: International Electron Devices Meeting, pp. 719-722 (2000)Google Scholar
  2. 2.
    Hisamoto, D., Lee, W.-C., Kedzierski, J., Anderson, E., Takeuchi, H., Asano, K., King, T.-J., Bokor, J., Hu, C.: A folded-channel MOSFET for deep-sub-tenth micron era. In: International Electron Devices Meeting, pp. 1032–1034 (1998)Google Scholar
  3. 3.
    Yu, B., Chang, L., Ahmed, S., Wang, H., Bell, S., Yang, C.Y., Tabery, C., Ho, C., Xiang, Q., King, T.-J. et al.: FinFET scaling to 10 nm gate length. In: International Electron Devices Meeting, pp. 251–254 (2002)Google Scholar
  4. 4.
    Lu, W., Xie, P., Lieber, C.M.: Nanowire transistor performance limits and applications. IEEE Trans. Electron Devices 55, 2859–2876 (2008)CrossRefGoogle Scholar
  5. 5.
    Loubet, N., Hook, T., Montanini, P., Yeung, C.-W., Kanakasabapathy, S., Guillom, M., Yamashita, T., Zhang, J., Miao, X., Wang, J., et al.: Stacked nanosheet gate-all-around transistor to enable scaling beyond FinFET. In: Symposium on VLSI Technology, pp. T230–T231 (2017)Google Scholar
  6. 6.
    Jin, S., Fischetti, M.V., Tang, T.-W.: Modeling of electron mobility in gated silicon nanowires at room temperature: surface roughness scattering, dielectric screening, and band nonparabolicity. J. Appl. Phys. 102, 083715 (2007)CrossRefGoogle Scholar
  7. 7.
    Gnani, E., Reggiani, S., Grudi, A., Parruccini, P., Colle, R., Rudan, M., Baccarani, G.: Band-structure effects in ultrascaled silicon nanowires. IEEE Trans. Electron Devices 54, 2243–2254 (2007)CrossRefGoogle Scholar
  8. 8.
    Jin, S., Fischetti, M.V., Tang, T.-W.: Theoretical study of carrier transport in silicon nanowire transistors based on the multisubband Boltzmann transport equation. IEEE Trans. Electron Devices 55, 2886–2897 (2008)CrossRefGoogle Scholar
  9. 9.
    Lenzi, L., Palestri, P., Gnani, E., Reggiani, S., Grudi, A., Esseni, D., Selmi, L., Baccarani, G.: Investigation of the transport properties of silicon nanowires using deterministic and Monte Carlo approaches to the solution of the Boltzmann transport equation. IEEE Trans. Electron Devices 55, 2086–2096 (2008)CrossRefGoogle Scholar
  10. 10.
    Sore, B., Magnus, W., Vandenberghe, W.: Low-field mobility in ultrathin silicon nanowire junctionless transistors. Appl. Phys. Lett. 99, 233509 (2011)CrossRefGoogle Scholar
  11. 11.
    Lee, Y., Kakushima, K., Natori, K., Iwai, H.: Gate capacitance modeling and diameter-dependent performance of nanowire MOSFETs. IEEE Trans. Electron Devices 59, 1037–1045 (2012)CrossRefGoogle Scholar
  12. 12.
    Paussa, A., Conzatti, F., Breda, D., Vermiglio, R., Esseni, D., Palestri, P.: Pseudospectral methods for the efficient simulation of quantization effects in nanoscale MOS transistors. IEEE Trans. Electron Devices 57, 3239–3249 (2010)CrossRefGoogle Scholar
  13. 13.
    Bescond, M., Cavassilas, N., Lannoo, M.: Effective-mass approach for n-type semiconductor nanowire MOSFETs arbitrarily oriented. Nanotechnology 18, 255201 (2007)CrossRefGoogle Scholar
  14. 14.
    Pham, A.-T., Meinerzhagen, B., Jungemann, C.: A fast solver for hole inversion layers with an efficient 2D-space discretization. J. Comput. Electron. 7, 99–102 (2008)CrossRefGoogle Scholar
  15. 15.
    Hong, S.M., Pham, A.T., Jungemann, C.: Deterministic solvers for the Boltzmann transport equation. Springer (2011)Google Scholar
  16. 16.
    Sentaurus Device Monte Carlo User Guide, Version O-2018.06, Synopsys, Mountain View, 2018Google Scholar
  17. 17.
    Lehoucq, R.B., Sorensen, D.C., Yang, C.: ARPACK Users’ Guide: Solution of Large-Scale Eigenvalue Problems with Implicitly Restarted Arnoldi Methods. SIAM, Philadelphia (1998)CrossRefzbMATHGoogle Scholar
  18. 18.
    Davis, T.A.: Algorithm 832: UMFPACK V4. 3—an unsymmetric-pattern multifrontal method. ACM Trans. Math. Softw. 30, 196–199 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Liseikin, V.D.: Grid Generation Methods. Scientific Computation. Springer, Berlin (1999)CrossRefzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Electrical Engineering and Computer ScienceGwangju Institute of Science and TechnologyGwangjuSouth Korea

Personalised recommendations