Comparative analysis of the quantum FinFET and trigate FinFET based on modeling and simulation

  • N. P. MaityEmail author
  • Reshmi Maity
  • S. Maity
  • S. Baishya


A comparative analysis of the trigate fin-shaped field-effect transistor (FinFET) and quantum FinFET (QFinFET) is carried out by using density gradient quantization models in the Synopsys three-dimensional (3-D) technology computer-aided design (TCAD) platform. The gate dielectric stack comprising 0.5 nm SiO2 (k = 3.9) and 2 nm HfO2 (k = 22) contributes to an effective oxide thickness of 0.86 nm and is kept constant throughout the study. The results demonstrate that the QFinFET can overcome the limitations of current FinFET devices when scaling down to the atomic level. An analytical model including quantum-mechanical effects for evaluation of the drain current of the FinFET is established and validated using the TCAD software. The degradation in the drive current with downscaling of the fin thickness for the trigate FinFET and the increase in the drive current for the QFinFET are presented. The results are improved by taking into account different channel lengths and body thicknesses to estimate the drain current–gate voltage and gate capacitance–gate voltage characteristics for both the trigate FinFET and QFinFET. The drain-induced barrier lowering and subthreshold swing are also analyzed for the trigate FinFET and QFinFET at different technology nodes, revealing excellent characteristics. It is clearly established that the QFinFET can overcome the limitations faced by current FinFET devices when scaling the silicon down to the atomic level and may represent the next generation of FinFET devices.





The authors would like to thank Mr. Praveen Gunturi, National Institute of Technology, Silchar for his support of this technical work. The authors are highly indebted to TCAD Laboratory, National Institute of Technology, Silchar, India for supporting this technical work.


  1. 1.
    Abadi, R., Saremi, M.: A resonant tunneling nanowire field effect transistor with physical contractions: a negative differential resistance device for low power very large scale integration applications. J. Electron. Mater. 47(2), 1091–1098 (2018)CrossRefGoogle Scholar
  2. 2.
    Imenabadi, R., Saremi, M., Vandenberghe, W.: A novel PNPN-like Z-shaped tunnel field-effect transistor with improved ambipolar behavior and RF performance. IEEE Trans. Electron Devices 64(11), 4752–4758 (2017)CrossRefGoogle Scholar
  3. 3.
    Saremi, M., Afzali-Kusha, A., Mohammadi, S.: Ground plane fin-shaped field effect transistor (GP-FinFET): a FinFET for low leakage power circuits. Microelectron. Eng. 95, 74–82 (2012)CrossRefGoogle Scholar
  4. 4.
    Sharma, S.M., Dasgupta, S., Kartikeyan, M.V.: Successive conformal mapping technique to extract inner fringe capacitance of underlap DG-FinFET and its variations with geometrical parameters. IEEE Trans. Electron Devices 64(2), 384–391 (2017)CrossRefGoogle Scholar
  5. 5.
    Yeh, W., Zhang, W., Yang, Y., Dai, A., Wu, K., Chou, T., Lin, C., Gan, K., Shih, C., Chen, P.: The observation of width quantization impact on device performance and reliability for high-k/metal tri-gate FinFET. IEEE Trans. Device Mater. Reliab. 16(4), 610–616 (2016)CrossRefGoogle Scholar
  6. 6.
    Chen, S., Hellings, G., Thijs, S., Linten, D., Groeseneken, G.: Process options impact on ESD diode performance in bulk FinFET technology. IEEE Trans. Electron Devices 63(9), 3424–3431 (2016)CrossRefGoogle Scholar
  7. 7.
    Koldiaev, V., Pirogova, R.: Vertical super thin body semiconductor on dielectric wall devices and methods of their fabrication. U.S. Patent: 8796085 B2 (2014)Google Scholar
  8. 8.
    Dennard, R., Gaensslen, F., Yu, H., Rideout, V., Bassous, E., LeBlanc, A.: Design of ion-implanted MOSFET’s with very small physical dimensions. IEEE J. Solid-State Circuits 9, 256–268 (1974)CrossRefGoogle Scholar
  9. 9.
    T. Tanaka, T. Usuki, T. Futatsugi, Y. Momiyama, T. Sugii, Vth fluctuation induced by statistical variation of pocket dopant profile, in IEEE International Electron Devices Meeting, IEEE Press, pp. 271–274 (2000)Google Scholar
  10. 10.
    Majkusiak, B., Janik, T., Walczak, J.: Semiconductor thickness effects in the double-gate SOI MOSFET. IEEE Trans. Electron Devices 45(5), 1127–1134 (1998)CrossRefGoogle Scholar
  11. 11.
    Riddit, C., Alexander, C., Brown, A.R., Roy, S., Asenov, A.: Simulation of “ab initio” quantum confinement scattering in UTB MOSFETs using three-dimensional ensemble Monte Carlo. IEEE Trans. Electron Devices 58(3), 600–608 (2011)CrossRefGoogle Scholar
  12. 12.
    D. James, Intel Ivy Bridge unveiled—the first commercial tri-gate, high-k, metal-gate CPU, in IEEE Proceedings of Custom Integrated Circuits Conference (2012)Google Scholar
  13. 13.
    Gaynor, B.D., Hossoun, S.: Fin shape impact on FinFET leakage with application to multithreshold and ultralow-leakage FinFET design. IEEE Trans. Electron Devices 61(8), 2738–2744 (2014)CrossRefGoogle Scholar
  14. 14.
    Mazurier, J., Weber, O., Andrieu, F., Toffoli, A., Allain, F., Perreau, P., Fenouillet-Beranger, C., Thomas, O., Belleville, M., Faynot, O.: On the variability in planar FDSOI technology: from MOSFETs to SRAM cells. IEEE Trans. Electron Devices 58(8), 2326–2336 (2011)CrossRefGoogle Scholar
  15. 15.
    Majumdar, A., Ren, Z., Koester, S.J., Haensch, W.: Undoped-body extremely thin SOI MOSFETs with back gates. IEEE Trans. Electron Devices 56(10), 2270–2276 (2009)CrossRefGoogle Scholar
  16. 16.
    M.G. Bardon, P. Schuddinck, P. Raghavan, D. Jang, D. Yakimets, A. Mercha, D. Verkest, A. Thean, Dimensioning for power and performance under 10 nm: the limits of FinFETs scaling, in IEEE Proceedings of International Conference on IC Design and Technology Conference (2015)Google Scholar
  17. 17.
    Munteanu, D., Autran, J.L., Loussier, X., Harrison, S., Cerutti, R., Skotnicki, T.: Quantum short-channel compact modelling of drain-current in double-gate MOSFET. Solid-State Electron. 50, 680–686 (2006)CrossRefGoogle Scholar
  18. 18.
    Maity, N.P., Maity, R., Thapa, R.K., Baishya, S.: A tunneling current density model for ultra-thin HfO2 high-k dielectric material based MOS devices. Superlattices Microstruct. 95, 24–32 (2016)CrossRefGoogle Scholar
  19. 19.
    Maity, N.P., Maity, R., Baishya, S.: Voltage and oxide thickness dependent tunneling current density and tunnel resistivity model: application to high-k material HfO2 based MOS devices. Superlattices Microstruct. 111, 628–641 (2017)CrossRefGoogle Scholar
  20. 20.
    S. Harrison, D. Munteanu, J.L. Autran, A. Cros, R. Cerutti, T. Skotnicki, Electrical characterization and modeling of high performance SON DG MOSFET’s, in IEEE Proceedings of ESSDERC, pp. 373–376 (2004)Google Scholar
  21. 21.
    Van Overstraeten, R.J., Declerck, G.J., Muls, P.A.: Theory of the MOS transistor in weak inversion-new method to determine the number of surface states. IEEE Trans. Electron Devices 22(5), 282–288 (1975)CrossRefGoogle Scholar
  22. 22.
    B. Raj, A.K. Saxena, S. Dasgupta, Quantum inversion charge and drain current analysis for double-gate FinFET device: analytical modeling and TCAD simulation approach, in IEEE Fourth UKSim European Symposium on Computer Modeling and Simulation, pp. 526–530 (2010)Google Scholar
  23. 23.
    Munteanu, D., Utran, J., Loussier, X., Harrison, S., Cerutti, R., Skotnicki, T.: Quantum short channel compact modeling of drain current in double gate MOSFET. Solid State Electron. 50, 680–686 (2006)CrossRefGoogle Scholar
  24. 24.
    Rios, R., Cappellani, A., Armstrong, M., Bundrevich, A., Gomez, H., Pai, R., Rahhal-orabi, N., Kuhn, K.: Comparison of junctionless and conventional trigate transistors with Lg down to 26 nm. IEEE Electron Device Lett. 32(9), 1170–1172 (2011)CrossRefGoogle Scholar
  25. 25.
    Saha, R., Baishya, S., Bhowmick, B.: 3D analytical modeling of surface potential, threshold voltage and subthreshold swing in dual-material-gate (DMG) SOI FinFET. J. Comput. Electron. 17, 153–162 (2018)CrossRefGoogle Scholar
  26. 26.
    Sentaurus Device User Guide. Synopsys, Inc. (2015)Google Scholar
  27. 27.
    Pal, A., Sarkar, A.: Analytical study of dual material surrounding gate MOSFET to suppress short-channel effects (SCEs). Eng. Sci. Technol. Int. J. 17, 205–212 (2014)CrossRefGoogle Scholar
  28. 28.
    Tripathi, S., Narendar, V.: A three-dimensional (3D) analytical model for subthreshold characteristics of uniformly doped FinFET. Superlattices Microstruct. 83, 476–487 (2015)CrossRefGoogle Scholar
  29. 29.
    McKelvey, J.P.: Solid State and Semiconductor Physics. Harper and Row, New York (1996)Google Scholar
  30. 30.
    Nawaz, S.M., Dutta, S., Chattopadhyay, A., Mallik, A.: Comparison of random dopant and gate-metal workfunction variability between junctionless and conventional FinFETs. IEEE Electron Device Lett. 35(6), 663–665 (2014)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • N. P. Maity
    • 1
  • Reshmi Maity
    • 1
  • S. Maity
    • 2
  • S. Baishya
    • 3
  1. 1.Department of Electronics and Communication EngineeringMizoram University (A Central University, Government of India)AizawlIndia
  2. 2.Department of Electronics and Communication EngineeringTezpur University (A Central University, Government of India)TezpurIndia
  3. 3.Department of Electronics and Communication EngineeringNational Institute of TechnologySilcharIndia

Personalised recommendations