Time-dependent equivalent circuit modeling of ferromagnetic single electron transistors

  • Kasra Jamshidnezhad
  • Mohammad Javad SharifiEmail author


In this paper, a physics-based time-dependent circuit model is proposed for ferromagnetic single electron transistors (FSETs). This model is based on a modified version of the single electronics orthodox theory and obtained by simultaneously solving the governing equations. The introduced model is valid for single or multi gate, symmetric or asymmetric, and magnetic or nonmagnetic island FSETs. The model describes accurately FSET characteristics for a wide range of temperatures and drain to source voltages and also includes the spin relaxation time effect. The proposed model is implemented in a commercial circuit simulator HSPICE for use in circuit simulation. Two series of SPICE simulations are then successfully carried out. In the first simulations, different DC characteristics of a nonmagnetic island FSET are produced and verified against the existing numerical and analytical results with good agreements. In the second simulations, the transient behavior of a nonmagnetic island FSET is analyzed by considering the effects of temperature and spin relaxation time. It is shown that there are two different time scales in the transient response; the shorter one originates from the discrete coulomb charging of the island and the longer one from the spin relaxation effect. As an application example of the model at the circuit level, a magnetic island FSET-based inverter is simulated. These results are verified against Monte Carlo simulation results with excellent agreement. Then, the transient behavior of the inverter is investigated using the model for the first time.


Ferromagnetic single electron transistor (FSET) Equivalent circuit model Single electronics orthodox theory Master equation Spin conservation equation HSPICE 


  1. 1.
    Flatte, M.E.: Spintronics. IEEE Trans. Electron Dev. 54, 907–920 (2007)CrossRefGoogle Scholar
  2. 2.
    Likharev, K. K.: Single-electron devices and their applications. in Proceedings of IEEE April 1999, pp. 606–632Google Scholar
  3. 3.
    Johnson, M., Silsbee, R.H.: Interfacial charge-spin coupling: injection and detection of spin magnetization in metals. Phys. Rev. Lett. 55, 1790–1793 (1985)CrossRefGoogle Scholar
  4. 4.
    Julliere, M.: Tunneling between ferromagnetic films. Phys. Lett. A 54, 225–226 (1975)CrossRefGoogle Scholar
  5. 5.
    Yakushiji, K., Ernult, F., Imamura, H., Yamane, K., Mitani, S., Takanashi, K., Takahashi, S., Maekawa, S., Fujimori, H.: Enhanced spin accumulation and novel magnetotransport in nanoparticles. Nat. Mater. 4, 57–61 (2005)CrossRefGoogle Scholar
  6. 6.
    Lee, T.H., Chen, C.D.: Probing spin accumulation induced magnetocapacitance in a single electron transistor. Sci. Rep. 5, 1–6 (2015)Google Scholar
  7. 7.
    Ernult, F., Yakushiji, K., Mitani, S., Takanashi, K.: Spin accumulation in metallic nanoparticles. J. Phys. Condens. Matter 19, 165214-1–165214-19 (2007)CrossRefGoogle Scholar
  8. 8.
    Bernand-Mantel, A., Seneor, P., Lidgi, N., Munoz, M., Cros, V.: Evidence for spin injection in a single metallic nanoparticle: a step towards nanospintronics. Appl. Phys. Lett. 89, 062502-1–062502-3 (2006)CrossRefGoogle Scholar
  9. 9.
    Mitani, S., Nogi, Y., Wang, H., Yakushiji, K., Ernult, F., Takanashi, K.: Current-induced tunnel magnetoresistance due to spin accumulation in Au nanoparticles. Appl. Phys. Lett 92, 152509-1–152509-3 (2008)CrossRefGoogle Scholar
  10. 10.
    Chen, C.D., Yao, Y.D., Lee, S.F., Shyu, J.H.: Magnetoresistance study in Co–Al–Co and Al–Co–Al double tunneling junctions. J. Appl. Phys. 91, 7469–7471 (2002)CrossRefGoogle Scholar
  11. 11.
    Ono, K., Shimada, H., Ootuka, Y.: Enhanced magnetic valve effect and magneto-coulomb oscillations in ferromagnetic single electron transistor. J. Phys. Soc. Jpn. 66, 1261–1264 (1997)CrossRefGoogle Scholar
  12. 12.
    Shyu, J.H., Yao, Y.D., Chen, C.D., Lee, S.F.: Magnetoresistance study in NiFe–Al–NiFe single-electron tunneling devices. J. Appl. Phys. 93, 8421–8423 (2003)CrossRefGoogle Scholar
  13. 13.
    Korotkov, A.N., Safarov, V.I.: Nonequilibrium spin distribution in a single-electron transistor. Phys. Rev. B 59, 89–92 (1999)CrossRefGoogle Scholar
  14. 14.
    Barnas, J., Weymann, I.: Spin effects in single-electron tunneling. J. Phys. Condens. Matter 20, 423202-1–423202-36 (2008)CrossRefGoogle Scholar
  15. 15.
    Lindebaum, S., Konig, J.: Theory of transport through noncollinear single-electron spin-valve transistors. Phys. Rev. B 84, 235409-1–235409-10 (2011)CrossRefGoogle Scholar
  16. 16.
    Barnas, J., Fert, A.: Interplay of spin accumulation and Coulomb blockade in double ferromagnetic junctions. J. Magn. Magn. Mater. 192, L391–L395 (1999)CrossRefGoogle Scholar
  17. 17.
    Barnas, J., Martinek, J., Michalek, G., Bulka, B.R.: Spin effects in ferromagnetic single-electron transistors. Phys. Rev. B 62, 12363–12373 (2000)CrossRefGoogle Scholar
  18. 18.
    Weymann, I., Barnas, J.: Transport characteristics of ferromagnetic single-electron transistors. Phys. Status Solidi (b) 236, 651–660 (2003)CrossRefGoogle Scholar
  19. 19.
    Jalil, M.B.A., Tan, S.G., Ma, M.J.: Enhanced magneto-Coulomb effect in asymmetric ferromagnetic single electron transistors. J. Appl. Phys. 105, 07C905-1–07C905-3 (2009)Google Scholar
  20. 20.
    Kuo, W., Chen, C.D.: Gate-controlled spin polarized current in ferromagnetic single electron transistors. Phys. Rev. B 65, 1041427-1–1041427-5 (2002)CrossRefGoogle Scholar
  21. 21.
    Hai, P.N., Sugahara, S., Tanaka, M.: Reconfigurable logic gates using single-electron spin transistors. Jpn. J. Appl. Phys. 46, 6579–6585 (2007)CrossRefGoogle Scholar
  22. 22.
    Johansson, J.: Spin transport in ferromagnetic/normal-metal tunnel junction arrays. Phys. Rev. B 85, 094421-1–094421-5 (2012)CrossRefGoogle Scholar
  23. 23.
    Bratas, A., Wang, X.H.: Linear response conductance and magneto-resistance of ferromagnetic single-electron transistors. Phys. Rev. B 64, 104434-1–104434-10 (2001)CrossRefGoogle Scholar
  24. 24.
    Wang, X.H., Bratas, A.: Large magnetoresistance ratio in ferromagnetic single-electron transistors in the strong tunneling regime. Phys. Rev. Lett. 83, 5138–5141 (1999)CrossRefGoogle Scholar
  25. 25.
    Temple, R.C., Marrows, C.H.: Single-electron spin interplay for characterization of magnetic double tunnel junctions. Phys. Rev. B 88, 184415-1–184415-6 (2013)CrossRefGoogle Scholar
  26. 26.
    Jamshidnezhad, K., Sharifi, M.J.: Physics-based analytical model for ferromagnetic single electron transistor. J. Appl. Phys. 121, 113905-1–113905-11 (2017)CrossRefGoogle Scholar
  27. 27.
    Ghosh, A., Jain, A., Singh, N.B., Sarkar, S.K.: A modified macro model approach for SPICE based simulation of single electron transistor. J. Comput. Electron. 15, 400–406 (2016)CrossRefGoogle Scholar
  28. 28.
    Elabd, A.A., El-Rabaie, E.S.M., Shalaby, A.T.: Analysis of rare events effect on single-electronics simulation based on orthodox theory. J. Comput. Electron. 14, 604–610 (2015)CrossRefGoogle Scholar
  29. 29.
    Moodera, J.S., Kinder, L.R.: Ferromagnetic–insulator–ferromagnetic tunneling: spin-dependent tunneling and large magnetoresistance in trilayer junctions (invited). J. Appl. Phys. 79, 4724–4729 (1996)CrossRefGoogle Scholar
  30. 30.
    Wasshuber, C., Kosina, H., Selberherr, S.: A simulator for single-electron tunnel devices and circuits. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 16, 937–944 (1997)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Faculty of Electrical EngineeringShahid Beheshti UniversityVelenjak, TehranIran

Personalised recommendations