Advertisement

Journal of Computational Electronics

, Volume 18, Issue 2, pp 482–491 | Cite as

Simulation and comparative analysis of the DC characteristics of submicron GaN HEMTs for use in CAD software

  • M. N. Khan
  • U. F. Ahmed
  • M. M. AhmedEmail author
  • S. Rehman
Article
  • 102 Downloads

Abstract

Bearing in mind the requirements of design engineers, a nonlinear model is developed to simulate the temperature-dependent IV characteristics of submicron high-electron-mobility transistors (HEMTs). Self- and ambient heating effects are incorporated into the model expression to cater for both the negative and positive conductance of the device, after the onset of the saturation current. It is shown that the accuracy of numerical models previously developed for metal–semiconductor field-effect transistors (MESFETs) deteriorates when simulating the IV characteristics of gallium nitride (GaN) HEMTs, primarily due to the self-heating effects. The validity of the proposed model is checked for GaN HEMTs with gate length (\(L_\mathrm{g}\)) ranging from 0.12 to 0.7 \(\upmu \hbox {m}\) in the temperature range of \(T=298\) to \(T=773\) K. It is demonstrated that the proposed model simulates, with a good degree of accuracy, the output characteristics of such devices exhibiting negative conductance in the saturation region of operation. It is observed that, for devices exhibiting negative conductance in the saturation region, the peak transconductance (\(g_\mathrm{m}\)) occurs at a relatively higher negative gate bias while the peak value reduces with increasing ambient temperature. The root-mean-square errors reveal that the proposed model is better than other similar models reported in the literature, with an improvement varying from 17 to 50 % depending on the device characteristics.

Keywords

Submicron HEMTs Nonlinear model DC characteristics Optimization 

References

  1. 1.
    Hudgins, J.L., Simin, G.S., Santi, E., Khan, M.A.: An assessment of wide bandgap semiconductors for power devices. IEEE Trans. Power Electron. 18(3), 907–914 (2003)CrossRefGoogle Scholar
  2. 2.
    Saremi, M., Hathwar, R., Dutta, M., Koeck, F.A., Nemanich, R.J., Chowdhury, S., Goodnick, S.M.: Analysis of the reverse IV characteristics of diamond-based PIN diodes. Appl. Phys. Lett. 111(4), 043507 (2017)CrossRefGoogle Scholar
  3. 3.
    Saremi, M.: Modeling and simulation of the programmable metallization cells (PMCs) and diamond-based power devices. Ph.D. Dissertation, Arizona State University (2017)Google Scholar
  4. 4.
    Holmes, J., Dutta, M., Koeck, F.A., Benipal, M., Brown, J., Fox, B., Hathwar, R., Johnson, H., Malakoutian, M., Saremi, M., et al.: A 4.5 \(\mu \text{m}\) PIN diamond diode for detecting slow neutrons. Nuclear Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 903, 297–301 (2018)CrossRefGoogle Scholar
  5. 5.
    Shenai, K., Scott, R.S., Baliga, B.J.: Optimum semiconductors for high-power electronics. IEEE Trans. Electron Devices 36(9), 1811–1823 (1989)CrossRefGoogle Scholar
  6. 6.
    Millan, J., Godignon, P., Perpina, X., Pérez-Tomás, A., Rebollo, J.: A survey of wide bandgap power semiconductor devices. IEEE Trans. Power Electron. 29(5), 2155–2163 (2014)CrossRefGoogle Scholar
  7. 7.
    Rehman, S., Ahmed, M., Rafique, U., Khan, M.: A nonlinear model to assess DC/AC performance reliability of submicron SiC MESFETs. J. Comput. Electron. 17, 1199–1209 (2018)CrossRefGoogle Scholar
  8. 8.
    Ahmed, M.M.: Effects of sintering on Au/Ti/GaAs Schottky barrier submicron metal-semiconductor field-effect transistors characteristics. J. Vac. Sci. Technol. B Microelectron. Nanometer Struct. Process. Meas. Phenom. 16(4), 2034–2037 (1998)CrossRefGoogle Scholar
  9. 9.
    Khan, A.B., Sharma, M., Siddiqui, M., Anjum, S.: Performance analysis of AC and DC characteristics of AlGaN/GaN HEMT at various temperatures. Trans. Electr. Electron. Mater. 19, 1–6 (2018)CrossRefGoogle Scholar
  10. 10.
    Batarseh, I., Harb, A.: Review of switching concepts and power semiconductor devices. In: Power Electronics, Springer, pp. 25–91 (2018)Google Scholar
  11. 11.
    Shen, Z.J., Sabui, G., Miao, Z., Shuai, Z.: Wide-bandgap solid-state circuit breakers for DC power systems: device and circuit considerations. IEEE Trans. Electron Devices 62(2), 294–300 (2015)CrossRefGoogle Scholar
  12. 12.
    Khan, M.A., Bhattarai, A., Kuznia, J., Olson, D.: High electron mobility transistor based on a GaN-\(\text{ Al }_x\text{ Ga }_{1-x}\text{ N}\) heterojunction. Appl. Phys. Lett. 63(9), 1214–1215 (1993)CrossRefGoogle Scholar
  13. 13.
    Baliga, B.J.: Power semiconductor device figure of merit for high-frequency applications. IEEE Electron Device Lett. 10(10), 455–457 (1989)CrossRefGoogle Scholar
  14. 14.
    Johnson, J., Piner, E., Vescan, A., Therrien, R., Rajagopal, P., Roberts, J., Brown, J., Singhal, S., Linthicum, K.: 12 W/mm AlGaN-GaN HFETs on silicon substrates. IEEE Electron Device Lett. 25(7), 459–461 (2004)CrossRefGoogle Scholar
  15. 15.
    Ducatteau, D., Minko, A., Hoel, V., Morvan, E., Delos, E., Grimbert, B., Lahreche, H., Bove, P., Gaquiere, C., De Jaeger, J., et al.: Output power density of 5.1/mm at 18 GHz with an AlGaN/GaN HEMT on Si substrate. IEEE Electron Device Lett. 27(1), 7–9 (2006)CrossRefGoogle Scholar
  16. 16.
    Marti, D., Tirelli, S., Alt, A.R., Roberts, J., Bolognesi, C.: 150-GHz cutoff frequencies and 2-W/mm output power at 40 GHz in a millimeter-wave AlGaN/GaN HEMT technology on silicon. IEEE Electron Device Lett. 33(10), 1372–1374 (2012)CrossRefGoogle Scholar
  17. 17.
    Ma, K., He, N., Liserre, M., Blaabjerg, F.: Frequency-domain thermal modeling and characterization of power semiconductor devices. IEEE Trans. Power Electron. 31(10), 7183–7193 (2016)CrossRefGoogle Scholar
  18. 18.
    Sun, R., Liang, Y.C., Yeo, Y.-C., Wang, Y.-H., Zhao, C.: Design of power integrated circuits in full AlGaN/GaN MIS-HEMT configuration for power conversion. Phys. Status Solidi (a) 214(3), 1600562 (2017)CrossRefGoogle Scholar
  19. 19.
    Martin-Horcajo, S., Wang, A., Romero, M., Tadjer, M., Koehler, A., Anderson, T., Calle, F.: Impact of device geometry at different ambient temperatures on the self-heating of GaN-based HEMTs. Semicond. Sci. Technol. 29(11), 115013 (2014)CrossRefGoogle Scholar
  20. 20.
    Alim, M.A., Rezazadeh, A.A., Gaquiere, C.: Thermal characterization of DC and small-signal parameters of 150 nm and 250 nm gate-length AlGaN/GaN HEMTs grown on a SiC substrate. Semicond. Sci. Technol. 30(12), 125005 (2015)CrossRefGoogle Scholar
  21. 21.
    Mantooth, H.A., Peng, K., Santi, E., Hudgins, J.L.: Modeling of wide bandgap power semiconductor devices—part I. IEEE Trans. Electron Devices 62(2), 423–433 (2015)CrossRefGoogle Scholar
  22. 22.
    Santi, E., Peng, K., Mantooth, H.A., Hudgins, J.L.: Modeling of wide-bandgap power semiconductor devices—part II. IEEE Trans. Electron Devices 62(2), 434–442 (2015)CrossRefGoogle Scholar
  23. 23.
    Angelov, I., Rorsman, N., Stenarson, J., Garcia, M., Zirath, H.: An empirical table-based FET model. IEEE Trans. Microw. Theory Tech. 47(12), 2350–2357 (1999)CrossRefGoogle Scholar
  24. 24.
    Curtice, W.R., Ettenberg, M.: A nonlinear GaAs FET model for use in the design of output circuits for power amplifiers. IEEE Trans. Microw. Theory Tech. 33(12), 1383–1394 (1985)CrossRefGoogle Scholar
  25. 25.
    McCamant, A.J., McCormack, G.D., Smith, D.H.: An improved GaAs MESFET model for SPICE. IEEE Trans. Microw. Theory Tech. 38(6), 822–824 (1990)CrossRefGoogle Scholar
  26. 26.
    Dobes, J.: Using modified GaAs FET model function for the accurate representation of PHEMTS and varactors. In: Electrotechnical Conference, 2004. MELECON 2004. Proceedings of the 12th IEEE Mediterranean, vol. 1, IEEE, pp. 35–38 (2004)Google Scholar
  27. 27.
    Islam, M., Zaman, M.: A seven-parameter nonlinear I-V characteristics model for sub-\(\mu \text{m}\) range GaAs MESFETs. Solid State Electron. 48(7), 1111–1117 (2004)CrossRefGoogle Scholar
  28. 28.
    Riaz, M., Ahmed, M.M., Munir, U.: An improved model for current voltage characteristics of submicron SiC MESFETs. Solid State Electron. 121, 54–61 (2016)CrossRefGoogle Scholar
  29. 29.
    Cheng, X., Li, M., Wang, Y.: An analytical model for current-voltage characteristics of AlGaN/GaN HEMTs in presence of self-heating effect. Solid State Electron. 54(1), 42–47 (2010)CrossRefGoogle Scholar
  30. 30.
    Rodríguez, R., González, B., García, J., Yigletu, F.M., Tirado, J.M., Iñiguez, B., Nunez, A.: Numerical simulation and compact modelling of AlGaN/GaN HEMTs with mitigation of self-heating effects by substrate materials. Phys. Status Solidi (a) 212(5), 1130–1136 (2015)CrossRefGoogle Scholar
  31. 31.
    Jena, K., Swain, R., Lenka, T.R.: Modeling and comparative analysis of DC characteristics of AlGaN/GaN HEMT and MOSHEMT devices. Int. J. Numer. Model. Electron. Netw. Devices Fields 29(1), 83–92 (2016)CrossRefGoogle Scholar
  32. 32.
    Muhea, W.E., Yigletu, F.M., Cabré-Rodon, R., Iñiguez, B.: Analytical model for Schottky Barrier height and threshold voltage of AlGaN/GaN HEMTs with piezoelectric effect. IEEE Trans. Electron Devices 65(3), 901–907 (2018)CrossRefGoogle Scholar
  33. 33.
    Neamen, D.A., et al.: Semiconductor Physics and Devices, 3rd edn. McGraw-Hill, New York (1997)Google Scholar
  34. 34.
    Khan, M., Ahmed, U., Ahmed, M., Rehman, S.: An improved model to assess temperature-dependent DC characteristics of submicron GaN HEMTs. J. Comput. Electron. 17(2), 653–662 (2018)CrossRefGoogle Scholar
  35. 35.
    Gaska, R., Chen, Q., Yang, J., Osinsky, A., Khan, M.A., Shur, M.S.: High-temperature performance of AlGaN/GaN HFETs on SiC substrates. IEEE Electron. Device Lett. 18(10), 492–494 (1997)CrossRefGoogle Scholar
  36. 36.
    Arulkumaran, S., Ng, G.I., Vicknesh, S., Wang, H., Ang, K.S., Tan, J.P.Y., Lin, V.K., Todd, S., Lo, G.-Q., Tripathy, S.: Direct current and microwave characteristics of sub-micron AlGaN/GaN high-electron-mobility transistors on 8-in. Si (111) substrate. Jpn. J. Appl. Phys. 51(11R), 111001 (2012)CrossRefGoogle Scholar
  37. 37.
    Yigletu, F.M., Khandelwal, S., Fjeldly, T.A., Iñiguez, B.: Compact charge-based physical models for current and capacitances in AlGaN/GaN HEMTs. IEEE Trans. Electron Devices 60(11), 3746–3752 (2013)CrossRefGoogle Scholar
  38. 38.
    Ahmed, M.M.: Abrupt negative differential resistance in ungated GaAs FET’s. IEEE Trans. Electron Devices 44(11), 2031–2033 (1997)CrossRefGoogle Scholar
  39. 39.
    Tan, W., Uren, M., Fry, P., Houston, P., Balmer, R., Martin, T.: High temperature performance of AlGaN/GaN HEMTs on Si substrates. Solid State Electron. 50(3), 511–513 (2006)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • M. N. Khan
    • 1
  • U. F. Ahmed
    • 1
  • M. M. Ahmed
    • 1
    Email author
  • S. Rehman
    • 1
  1. 1.Department of Electrical EngineeringCapital University of Science and TechnologyIslamabadPakistan

Personalised recommendations