Advertisement

Atomistic insight into sequence-directed DNA bending and minicircle formation propensity in the absence and presence of phased A-tracts

  • Alberto Mills
  • Federico GagoEmail author
Article
  • 15 Downloads

Abstract

Bending of double-stranded (ds) DNA plays a crucial role in many important biological processes and is relevant for nanotechnological applications. Among all the elements that have been studied in relation to dsDNA bending, A-tracts stand out as one of the most controversial. The “ApA wedge” theory was disproved when a series of linear polynucleotides containing phased 5′-A4T4-3′ or 5′-T4A4-3′ runs were shown to be bent or straight, respectively, and crystallographic evidence revealed that A-tracts are unbent. Furthermore, some of the smallest dsDNA minicircles described to date (~ 100 bp in size) lack A-tracts and are subjected to varying levels of torsional stress. Representative DNA sequences from this experimental background were modeled in atomic detail and their dynamic behavior was simulated over hundreds of nanoseconds using the AMBER force field ParmBSC1. Subsequent analysis of the resulting trajectories allowed us to (i) unambiguously establish the location of the bends in all cases; (ii) identify the structural elements that are directly responsible for the macroscopically detected curvature; and (iii) reveal the importance not only of coherently summing the effects of the bending elements when they are in synchrony with the natural repeat of the helix (i.e. separated by an integral number of helical turns) but also when alternated with a half-integral separation of opposite effects. We conclude that the major determinant of the macroscopically observed bending is the proper grouping and phasing of the positive roll imposed by pyrimidine-purine (YR) steps and the negative or null roll characteristic of RY steps and A-tracts, respectively. This conclusion is in very good agreement with the structural parameters experimentally derived for much smaller DNA molecules either alone or as found in DNA–protein complexes. We expect that this work will pave the way for future studies on drug-induced DNA bending, DNA shape readout by transcription factors, structure of circular extrachromosomal DNA, and custom design of curved DNA origami scaffolds.

Keywords

DNA structure Molecular dynamics simulations Circular DNA 

Notes

Acknowledgements

A.M. gratefully acknowledges being the recipient of a predoctoral fellowship from the University of Alcalá. We are indebted to Jason Swails for help provided in the AMBER reflector regarding circular DNA molecules, Jürgen Walther for assistance at the MCDNA server, and the anonymous reviewers for helpful suggestions. We thankfully acknowledge the GPU time granted on Minotauro (BCV-2019-2-0016) and the technical support provided by staff at the Barcelona Supercomputing Center.

Funding

Financial support from the Spanish Ministerio de Economía y Competitividad (SAF2015-64629-C2-2-R) and PharmaMar S.A.U. (Colmenar Viejo, Madrid, Spain) is gratefully acknowledged.

Compliance with ethical standards

Conflict of interest

There are no conflicts to declare.

Supplementary material

10822_2020_288_MOESM1_ESM.docx (2.1 mb)
Supplementary file1 (DOCX 2176 kb)
10822_2020_288_MOESM2_ESM.mov (25.6 mb)
Supplementary file2 (MOV 26204 kb)

Supplementary file3 (MOV 23381 kb)

Supplementary file4 (MOV 29594 kb)

References

  1. 1.
    Travers A, Hiriart E, Churcher M, Caserta M, Di Mauro E (2010) The DNA sequence-dependence of nucleosome positioning in vivo and in vitro. J Biomol Struct Dyn 27(6):713–724.  https://doi.org/10.1080/073911010010524942 CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Gorin AA, Zhurkin VB, Olson WK (1995) B-DNA twisting correlates with base-pair morphology. J Mol Biol 247(1):34–48CrossRefGoogle Scholar
  3. 3.
    Olson WK, Gorin AA, Lu XJ, Hock LM, Zhurkin VB (1998) DNA sequence-dependent deformability deduced from protein-DNA crystal complexes. Proc Natl Acad Sci USA 95(19):11163–11168.  https://doi.org/10.1073/pnas.95.19.11163 CrossRefPubMedGoogle Scholar
  4. 4.
    Balaceanu A, Buitrago D, Walther J, Hospital A, Dans PD, Orozco M (2019) Modulation of the helical properties of DNA: next-to-nearest neighbour effects and beyond. Nucleic Acids Res 47(9):4418–4430.  https://doi.org/10.1093/nar/gkz255 CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Pasi M, Maddocks JH, Beveridge D, Bishop TC, Case DA, Cheatham T, Dans PD, Jayaram B, Lankas F, Laughton C, Mitchell J, Osman R, Orozco M, Perez A, Petkeviciute D, Spackova N, Sponer J, Zakrzewska K, Lavery R (2014) μABC: a systematic microsecond molecular dynamics study of tetranucleotide sequence effects in B-DNA. Nucleic Acids Res 42(19):12272–12283.  https://doi.org/10.1093/nar/gku855 CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Tomky LA, Strauss-Soukup JK, Maher LJ (1998) Effects of phosphate neutralization on the shape of the AP-1 transcription factor binding site in duplex DNA. Nucleic Acids Res 26(10):2298–2305.  https://doi.org/10.1093/nar/26.10.2298 CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Rohs R, Jin X, West SM, Joshi R, Honig B, Mann RS (2010) Origins of specificity in protein-DNA recognition. Annu Rev Biochem 79:233–269.  https://doi.org/10.1146/annurev-biochem-060408-091030 CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Abe N, Dror I, Yang L, Slattery M, Zhou T, Bussemaker HJ, Rohs R, Mann RS (2015) Deconvolving the recognition of DNA shape from sequence. Cell 161(2):307–318.  https://doi.org/10.1016/j.cell.2015.02.008 CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Rube HT, Rastogi C, Kribelbauer JF, Bussemaker HJ (2018) A unified approach for quantifying and interpreting DNA shape readout by transcription factors. Mol Syst Biol 14(2):e7902.  https://doi.org/10.15252/msb.20177902 CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Bates AD, Noy A, Piperakis MM, Harris SA, Maxwell A (2013) Small DNA circles as probes of DNA topology. Biochem Soc Trans 41(2):565–570.  https://doi.org/10.1042/BST20120320 CrossRefPubMedGoogle Scholar
  11. 11.
    Vafabakhsh R, Ha T (2012) Extreme bendability of DNA less than 100 base pairs long revealed by single-molecule cyclization. Science 337(6098):1097–1101.  https://doi.org/10.1126/science.1224139 CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Vologodskii A, Frank-Kamenetskii DM (2013) Strong bending of the DNA double helix. Nucleic Acids Res 41(14):6785–6792.  https://doi.org/10.1093/nar/gkt396 CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Crothers DM, Haran TE, Nadeau JG (7096s) Intrinsically bent DNA. J Biol Chem 265(13):7093–7096sPubMedGoogle Scholar
  14. 14.
    Barbic A, Zimmer DP, Crothers DM (2003) Structural origins of adenine-tract bending. Proc Natl Acad Sci USA 100(5):2369–2373.  https://doi.org/10.1073/pnas.0437877100 CrossRefPubMedGoogle Scholar
  15. 15.
    Nelson HC, Finch JT, Luisi BF, Klug A (1987) The structure of an oligo(dA)·oligo(dT) tract and its biological implications. Nature 330(6145):221–226.  https://doi.org/10.1038/330221a0 CrossRefPubMedGoogle Scholar
  16. 16.
    Stefl R, Wu H, Ravindranathan S, Sklenar V, Feigon J (2004) DNA A-tract bending in three dimensions: solving the dA4T4 vs. dT4A4 conundrum. Proc Natl Acad Sci USA 101(5):1177–1182.  https://doi.org/10.1073/pnas.0308143100 CrossRefPubMedGoogle Scholar
  17. 17.
    Haran TE, Mohanty U (2009) The unique structure of A-tracts and intrinsic DNA bending. Q Rev Biophys 42(1):41–81.  https://doi.org/10.1017/S0033583509004752 CrossRefPubMedGoogle Scholar
  18. 18.
    McAteer K, Aceves-Gaona A, Michalczyk R, Buchko GW, Isern NG, Silks LA, Miller JH, Kennedy MA (2004) Compensating bends in a 16-base-pair DNA oligomer containing a T3A3 segment: a NMR study of global DNA curvature. Biopolymers 75(6):497–511.  https://doi.org/10.1002/bip.20168 CrossRefPubMedGoogle Scholar
  19. 19.
    Calladine CR, Drew HR, McCall MJ (1988) The intrinsic curvature of DNA in solution. J Mol Biol 201(1):127–137CrossRefGoogle Scholar
  20. 20.
    Marini JC, Levene SD, Crothers DM, Englund PT (1982) Bent helical structure in kinetoplast DNA. Proc Natl Acad Sci USA 79(24):7664–7668CrossRefGoogle Scholar
  21. 21.
    Ulanovsky L, Bodner M, Trifonov EN, Choder M (1986) Curved DNA: design, synthesis, and circularization. Proc Natl Acad Sci USA 83(4):862–866CrossRefGoogle Scholar
  22. 22.
    Hagerman PJ (1986) Sequence-directed curvature of DNA. Nature 321(6068):449–450.  https://doi.org/10.1038/321449a0 CrossRefPubMedGoogle Scholar
  23. 23.
    Lionberger TA, Meyhofer E (2010) Bending the rules of transcriptional repression: tightly looped DNA directly represses T7 RNA polymerase. Biophys J 99(4):1139–1148.  https://doi.org/10.1016/j.bpj.2010.04.074 CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Du Q, Kotlyar A, Vologodskii A (2008) Kinking the double helix by bending deformation. Nucleic Acids Res 36(4):1120–1128.  https://doi.org/10.1093/nar/gkm1125 CrossRefPubMedGoogle Scholar
  25. 25.
    Lionberger TA, Demurtas D, Witz G, Dorier J, Lillian T, Meyhofer E, Stasiak A (2011) Cooperative kinking at distant sites in mechanically stressed DNA. Nucleic Acids Res 39(22):9820–9832.  https://doi.org/10.1093/nar/gkr666 CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Rauch CA, Perez-Morga D, Cozzarelli NR, Englund PT (1993) The absence of supercoiling in kinetoplast DNA minicircles. EMBO J 12(2):403–411CrossRefGoogle Scholar
  27. 27.
    Snodin BEK, Schreck JS, Romano F, Louis AA, Doye JPK (2019) Coarse-grained modelling of the structural properties of DNA origami. Nucleic Acids Res.  https://doi.org/10.1093/nar/gky1304 CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Beveridge DL, Barreiro G, Byun KS, Case DA, Cheatham TE, 3rd, Dixit SB, Giudice E, Lankas F, Lavery R, Maddocks JH, Osman R, Seibert E, Sklenar H, Stoll G, Thayer KM, Varnai P, Young MA (2004) Molecular dynamics simulations of the 136 unique tetranucleotide sequences of DNA oligonucleotides. I. Research design and results on d(CpG) steps. Biophys J 87(6):3799–3813.  https://doi.org/10.1529/biophysj.104.045252 CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Pérez A, Luque FJ, Orozco M (2012) Frontiers in molecular dynamics simulations of DNA. Acc Chem Res 45(2):196–205.  https://doi.org/10.1021/ar2001217 CrossRefPubMedGoogle Scholar
  30. 30.
    Salomon-Ferrer R, Götz AW, Poole D, Le Grand S, Walker RC (2013) Routine microsecond molecular dynamics simulations with AMBER on GPUs. 2. Explicit solvent particle Mesh Ewald. J Chem Theory Comput 9(9):3878–3888.  https://doi.org/10.1021/ct400314y CrossRefPubMedGoogle Scholar
  31. 31.
    Galindo-Murillo R, Robertson JC, Zgarbova M, Sponer J, Otyepka M, Jurecka P, Cheatham TE (2016) Assessing the current state of AMBER force filed modifications for DNA. J Chem Theory Comput 12(8):4114–4127.  https://doi.org/10.1021/acs.jctc.6b00186 CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Cornell WD, Cieplak P, Bayly CI, Gould IR, Merz KM, Ferguson DM, Spellmeyer DC, Fox T, Caldwell JW, Kollman PA (1995) A second generation force field for the simulation of proteins, nucleic acids, and organic molecules. J Am Chem Soc 117(19):5179–5197.  https://doi.org/10.1021/ja00124a002 CrossRefGoogle Scholar
  33. 33.
    Sprous D, Young MA, Beveridge DL (1999) Molecular dynamics studies of axis bending in d(G5-(GA4T4C)2–C5) and d(G5-(GT4A4C)2–C5): effects of sequence polarity on DNA curvature. J Mol Biol 285(4):1623–1632.  https://doi.org/10.1006/jmbi.1998.2241 CrossRefPubMedGoogle Scholar
  34. 34.
    Harris SA, Laughton CA, Liverpool TB (2008) Mapping the phase diagram of the writhe of DNA nanocircles using atomistic molecular dynamics simulations. Nucleic Acids Res 36(1):21–29.  https://doi.org/10.1093/nar/gkm891 CrossRefPubMedGoogle Scholar
  35. 35.
    Wang J, Cieplak P, Kollman PA (2000) How well does a restrained electrostatic potential (RESP) model perform in calculating conformational energies of organic and biological molecules? J Comput Chem 21(12):1049–1074.  https://doi.org/10.1002/1096-987X(200009)21:12%3c1049:AID-JCC3%3e3.0.CO;2-F CrossRefGoogle Scholar
  36. 36.
    Pérez A, Marchan I, Svozil D, Sponer J, Cheatham TE, 3rd, Laughton CA, Orozco M (2007) Refinement of the AMBER force field for nucleic acids: improving the description of α/γ conformers. Biophys J 92(11):3817–3829.  https://doi.org/10.1529/biophysj.106.097782 CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Mitchell JS, Laughton CA, Harris SA (2011) Atomistic simulations reveal bubbles, kinks and wrinkles in supercoiled DNA. Nucleic Acids Res 39(9):3928–3938.  https://doi.org/10.1093/nar/gkq1312 CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Joung IS, Cheatham TE (2008) Determination of alkali and halide monovalent ion parameters for use in explicitly solvated biomolecular simulations. J Phys Chem B 112(30):9020–9041.  https://doi.org/10.1021/jp8001614 CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Pasi M, Zakrzewska K, Maddocks JH, Lavery R (2017) Analyzing DNA curvature and its impact on the ionic environment: application to molecular dynamics simulations of minicircles. Nucleic Acids Res 45(7):4269–4277.  https://doi.org/10.1093/nar/gkx092 CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Ivani I, Dans PD, Noy A, Perez A, Faustino I, Hospital A, Walther J, Andrio P, Goni R, Balaceanu A, Portella G, Battistini F, Gelpi JL, Gonzalez C, Vendruscolo M, Laughton CA, Harris SA, Case DA, Orozco M (2016) Parmbsc1: a refined force field for DNA simulations. Nat Methods 13(1):55–58.  https://doi.org/10.1038/nmeth.3658 CrossRefPubMedGoogle Scholar
  41. 41.
    Macke T, Case DA (1998) Modeling unusual nucleic acid structures. In: Santa-Lucia J (ed) Leontes NB, J. Molecular s. American Chemical Society, Washington, DC, pp 379–393Google Scholar
  42. 42.
    Case DA, Ben-Shalom IY, Brozell SR, Cerutti DS, Cheatham TE, Cruzeiro VWD, Darden TA, Duke RE, Ghoreishi D, Gilson MK, Gohlke H, Goetz AW, Greene D, Harris R, Homeyer N, Izadi S, Kovalenko A, Kurtzman T, Lee TS, LeGrand S, Li P, Lin C, Liu J, Luchko T, Luo R, Mermelstein DJ, Merz KM, Miao Y, Monard G, Nguyen C, Nguyen H, Omelyan I, Onufriev A, Pan F, Qi R, Roe DR, Roitberg A, Sagui C, Schott-Verdugo S, Shen J, Simmerling CL, Smith J, Salomon-Ferrer R, Swails J, Walker RC, Wang J, Wei H, Wolf RM, Wu X, Xiao L, York DM, Kollman PA (2018) AmberTools18, 18th edn. UCSF, San FranciscoGoogle Scholar
  43. 43.
    Anzaldi LJ, Muñoz-Fernández D, Erill I (2012) BioWord: a sequence manipulation suite for Microsoft Word. BMC Bioinform 13:124.  https://doi.org/10.1186/1471-2105-13-124 CrossRefGoogle Scholar
  44. 44.
    Li P, Merz KM Jr (2014) Taking into account the ion-induced dipole interaction in the nonbonded model of ions. J Chem Theory Comput 10(1):289–297.  https://doi.org/10.1021/ct400751u CrossRefPubMedGoogle Scholar
  45. 45.
    Wang H, Laughton CA (2010) Molecular modelling methods to quantitate drug-DNA interactions. Methods Mol Biol 613:119–131.  https://doi.org/10.1007/978-1-60327-418-0_8 CrossRefPubMedGoogle Scholar
  46. 46.
    Lavery R, Moakher M, Maddocks JH, Petkeviciute D, Zakrzewska K (2009) Conformational analysis of nucleic acids revisited: curves+. Nucleic Acids Res 37(17):5917–5929.  https://doi.org/10.1093/nar/gkp608 CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    DeLano WL (2015) The PyMOL molecular graphics system. 1.8.2.0. edn. Schrödinger, LLCGoogle Scholar
  48. 48.
    Zhou T, Yang L, Lu Y, Dror I, Dantas Machado AC, Ghane T, Di Felice R, Rohs R (2013) DNAshape: a method for the high-throughput prediction of DNA structural features on a genomic scale. Nucleic Acids Res 41:W56–W62.  https://doi.org/10.1093/nar/gkt437 CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Widlund HR, Cao H, Simonsson S, Magnusson E, Simonsson T, Nielsen PE, Kahn JD, Crothers DM, Kubista M (1997) Identification and characterization of genomic nucleosome-positioning sequences. J Mol Biol 267(4):807–817.  https://doi.org/10.1006/jmbi.1997.0916 CrossRefPubMedGoogle Scholar
  50. 50.
    Zewail-Foote M, Hurley LH (1999) Ecteinascidin 743: a minor groove alkylator that bends DNA toward the major groove. J Med Chem 42(14):2493–2497.  https://doi.org/10.1021/jm990241l CrossRefPubMedGoogle Scholar
  51. 51.
    Wu S, Turner KM, Nguyen N, Raviram R, Erb M, Santini J, Luebeck J, Rajkumar U, Diao Y, Li B, Zhang W, Jameson N, Corces MR, Granja JM, Chen X, Coruh C, Abnousi A, Houston J, Ye Z, Hu R, Yu M, Kim H, Law JA, Verhaak RGW, Hu M, Furnari FB, Chang HY, Ren B, Bafna V, Mischel PS (2019) Circular ecDNA promotes accessible chromatin and high oncogene expression. Nature 575(7784):699–703.  https://doi.org/10.1038/s41586-019-1763-5 CrossRefPubMedGoogle Scholar
  52. 52.
    Franquelim HG, Khmelinskaia A, Sobczak JP, Dietz H, Schwille P (2018) Membrane sculpting by curved DNA origami scaffolds. Nat Commun 9(1):811.  https://doi.org/10.1038/s41467-018-03198-9 CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Lu XJ, Olson WK (2008) 3DNA: a versatile, integrated software system for the analysis, rebuilding and visualization of three-dimensional nucleic-acid structures. Nat Protoc 3(7):1213–1227.  https://doi.org/10.1038/nprot.2008.104 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Area of Pharmacology, Department of Biomedical Sciences and “Unidad Asociada IQM-CSIC”, School of Medicine and Health SciencesUniversity of AlcaláAlcalá de HenaresSpain

Personalised recommendations