Advertisement

Springer Nature is making Coronavirus research free. View research | View latest news | Sign up for updates

Sampling and refinement protocols for template-based macrocycle docking: 2018 D3R Grand Challenge 4

  • 85 Accesses

Abstract

We describe a new template-based method for docking flexible ligands such as macrocycles to proteins. It combines Monte-Carlo energy minimization on the manifold, a fast manifold search method, with BRIKARD for complex flexible ligand searching, and with the MELD accelerator of Replica-Exchange Molecular Dynamics simulations for atomistic degrees of freedom. Here we test the method in the Drug Design Data Resource blind Grand Challenge competition. This method was among the best performers in the competition, giving sub-angstrom prediction quality for the majority of the targets.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

References

  1. 1.

    Padhorny D, Hall DR, Mirzaei H et al (2018) Protein–ligand docking using FFT based sampling: D3R case study. J Comput Aided Mol Des 32:225–230. https://doi.org/10.1007/s10822-017-0069-7

  2. 2.

    Ignatov M, Liu C, Alekseenko A et al (2019) Monte Carlo on the manifold and MD refinement for binding pose prediction of protein–ligand complexes: 2017 D3R Grand Challenge. J Comput Aided Mol Des 33:119–127. https://doi.org/10.1007/s10822-018-0176-0

  3. 3.

    Vassar R, Bennett BD, Babu-Khan S et al (1999) Beta-secretase cleavage of Alzheimer’s amyloid precursor protein by the transmembrane aspartic protease BACE. Science 286:735–741. https://doi.org/10.1126/science.286.5440.735

  4. 4.

    Coutsias EA, Lexa KW, Wester MJ et al (2016) Exhaustive conformational sampling of complex fused ring macrocycles using inverse kinematics. J Chem Theory Comput 12:4674–4687. https://doi.org/10.1021/acs.jctc.6b00250

  5. 5.

    Mirzaei H, Beglov D, Paschalidis IC et al (2012) Rigid body energy minimization on manifolds for molecular docking. J Chem Theory Comput 8:4374–4380. https://doi.org/10.1021/ct300272j

  6. 6.

    Mirzaei H, Zarbafian S, Villar E et al (2015) Energy minimization on manifolds for docking flexible molecules. J Chem Theory Comput 11:1063–1076. https://doi.org/10.1021/ct500155t

  7. 7.

    Perez A, MacCallum JL, Dill KA (2015) Accelerating molecular simulations of proteins using Bayesian inference on weak information. Proc Natl Acad Sci USA 112:11846–11851. https://doi.org/10.1073/pnas.1515561112

  8. 8.

    MacCallum JL, Perez A, Dill KA (2015) Determining protein structures by combining semireliable data with atomistic physical models by Bayesian inference. Proc Natl Acad Sci USA 112:6985–6990. https://doi.org/10.1073/pnas.1506788112

  9. 9.

    Riniker S, Landrum GA (2015) Better informed distance geometry: using what we know to improve conformation generation. J Chem Inf Model 55:2562–2574. https://doi.org/10.1021/acs.jcim.5b00654

  10. 10.

    Landrum G (2019) RDKit: Open-source cheminformatics. https://rdkit.org/. Accessed 10 July 2019

  11. 11.

    Coutsias EA, Wester MJ (2019) Multiple loop closure and ring perception (unpublished)

  12. 12.

    Halgren TA (1996) Merck molecular force field. I. Basis, form, scope, parameterization, and performance of MMFF94. J Comput Chem 17:490–519

  13. 13.

    Tosco P, Stiefl N, Landrum G (2014) Bringing the MMFF force field to the RDKit: implementation and validation. J Cheminform 6:37. https://doi.org/10.1186/s13321-014-0037-3

  14. 14.

    Moghadasi M, Mirzaei H, Mamonov A et al (2015) The impact of side-chain packing on protein docking refinement. J Chem Inf Model 55:872–881. https://doi.org/10.1021/ci500380a

  15. 15.

    Kortemme T, Morozov AV, Baker D (2003) An orientation-dependent hydrogen bonding potential improves prediction of specificity and structure for proteins and protein-protein complexes. J Mol Biol 326:1239–1259. https://doi.org/10.1016/S0022-2836(03)00021-4

  16. 16.

    Wedemeyer WJ, Baker D (2003) Efficient minimization of angle-dependent potentials for polypeptides in internal coordinates. Proteins 53:262–272. https://doi.org/10.1002/prot.10525

  17. 17.

    Liu DC, Nocedal J (1989) On the limited memory BFGS method for large scale optimization. Math Program 45:503–528. https://doi.org/10.1007/BF01589116

  18. 18.

    Mamonov AB, Moghadasi M, Mirzaei H et al (2016) Focused grid-based resampling for protein docking and mapping. J Comput Chem 37:961–970. https://doi.org/10.1002/jcc.24273

  19. 19.

    Maier JA, Martinez C, Kasavajhala K et al (2015) ff14SB: improving the accuracy of protein side chain and backbone parameters from ff99SB. J Chem Theory Comput 11:3696–3713. https://doi.org/10.1021/acs.jctc.5b00255

  20. 20.

    Wang J, Wolf RM, Caldwell JW et al (2004) Development and testing of a general Amber force field. J Comput Chem 25:1157–1174. https://doi.org/10.1002/jcc.20035

  21. 21.

    Jakalian A, Bush BL, Jack DB, Bayly CI (2000) Fast, efficient generation of high-quality atomic charges. AM1-BCC model: I. Method. J Comput Chem 21:132–146

  22. 22.

    Case DA, Betz RM, Cerutti DS et al (2016) AMBER 2016 reference manual. University of California, San Francisco, pp 1–923

  23. 23.

    Jorgensen WL, Chandrasekhar J, Madura JD et al (1983) Comparison of simple potential functions for simulating liquid water. J Chem Phys 79:926–935. https://doi.org/10.1063/1.445869

  24. 24.

    Joung IS, Cheatham TE 3rd (2008) Determination of alkali and halide monovalent ion parameters for use in explicitly solvated biomolecular simulations. J Phys Chem B 112:9020–9041. https://doi.org/10.1021/jp8001614

  25. 25.

    Hornak V, Okur A, Rizzo RC, Simmerling C (2006) HIV-1 protease flaps spontaneously open and reclose in molecular dynamics simulations. Proc Natl Acad Sci USA 103:915–920. https://doi.org/10.1073/pnas.0508452103

  26. 26.

    Wang L, Friesner RA, Berne BJ (2011) Replica exchange with solute scaling: a more efficient version of replica exchange with solute tempering (REST2). J Phys Chem B 115:9431–9438. https://doi.org/10.1021/jp204407d

  27. 27.

    Ester M, Kriegel H-P, Sander J, Xu X (1996) A density-based algorithm for discovering clusters in large spatial databases with noise. Proceedings of the Second international conference on knowledge discovery and data mining. AAAI Press, Portland, pp 226–231

  28. 28.

    Pedregosa F, Varoquaux G, Gramfort A et al (2011) Scikit-learn: machine learning in Python. J Mach Learn Res 12:2825–2830

  29. 29.

    Butina D (1999) Unsupervised data base clustering based on daylight’s fingerprint and tanimoto similarity: a fast and automated way to cluster small and large data sets. J Chem Inf Comput Sci 39:747–750. https://doi.org/10.1021/ci9803381

  30. 30.

    Trott O, Olson AJ (2010) AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem 31:455–461. https://doi.org/10.1002/jcc.21334

  31. 31.

    Duan R, Xu X, Zou X (2018) Lessons learned from participating in D3R 2016 Grand Challenge 2: compounds targeting the farnesoid X receptor. J Comput Aided Mol Des 32:103–111. https://doi.org/10.1007/s10822-017-0082-x

  32. 32.

    da Silva Figueiredo Celestino GomesGomes P, Da Silva F, Bret G, Rognan D (2018) Ranking docking poses by graph matching of protein-ligand interactions: lessons learned from the D3R Grand Challenge 2. J Comput Aided Mol Des 32:75–87. https://doi.org/10.1007/s10822-017-0046-1

  33. 33.

    Fradera X, Verras A, Hu Y et al (2018) Performance of multiple docking and refinement methods in the pose prediction D3R prospective Grand Challenge 2016. J Comput Aided Mol Des 32:113–127. https://doi.org/10.1007/s10822-017-0053-2

  34. 34.

    Lensink MF, Velankar S, Kryshtafovych A et al (2016) Prediction of homoprotein and heteroprotein complexes by protein docking and template-based modeling: a CASP-CAPRI experiment. Proteins 84(Suppl 1):323–348. https://doi.org/10.1002/prot.25007

  35. 35.

    Kundrotas PJ, Anishchenko I, Badal VD et al (2018) Modeling CAPRI targets 110-120 by template-based and free docking using contact potential and combined scoring function. Proteins 86(Suppl 1):302–310. https://doi.org/10.1002/prot.25380

  36. 36.

    Peterson LX, Shin W-H, Kim H, Kihara D (2018) Improved performance in CAPRI round 37 using LZerD docking and template-based modeling with combined scoring functions. Proteins 86(Suppl 1):311–320. https://doi.org/10.1002/prot.25376

  37. 37.

    Porter KA, Padhorny D, Desta I et al (2019) Template-based modeling by ClusPro in CASP13 and the potential for using co-evolutionary information in docking. Protein: Struct Funct Bioinf. https://doi.org/10.1002/prot.25808

  38. 38.

    Zheng J, Kundrotas PJ, Vakser IA, Liu S (2016) Template-based modeling of protein-RNA interactions. PLoS Comput Biol 12:e1005120. https://doi.org/10.1371/journal.pcbi.1005120

  39. 39.

    Zheng J, Hong X, Xie J et al (2019) P3DOCK: a protein-RNA docking webserver based on template-based and template-free docking. Bioinformatics. https://doi.org/10.1093/bioinformatics/btz478

  40. 40.

    Kadukova M, Grudinin S (2017) Convex-PL: a novel knowledge-based potential for protein-ligand interactions deduced from structural databases using convex optimization. J Comput Aided Mol Des 31:943–958. https://doi.org/10.1007/s10822-017-0068-8

  41. 41.

    Jiménez J, Škalič M, Martínez-Rosell G, De Fabritiis G (2018) KDEEP: protein-ligand absolute binding affinity prediction via 3D-convolutional neural networks. J Chem Inf Model 58:287–296. https://doi.org/10.1021/acs.jcim.7b00650

  42. 42.

    Nguyen DD, Cang Z, Wu K et al (2019) Mathematical deep learning for pose and binding affinity prediction and ranking in D3R Grand Challenges. J Comput Aided Mol Des 33:71–82. https://doi.org/10.1007/s10822-018-0146-6

  43. 43.

    Sunseri J, King JE, Francoeur PG, Koes DR (2019) Convolutional neural network scoring and minimization in the D3R 2017 community challenge. J Comput Aided Mol Des 33:19–34. https://doi.org/10.1007/s10822-018-0133-y

Download references

Acknowledgements

This work was supported by National Institutes of Health grants R21 GM127952 and 1R01GM125813-01; National Science Foundation grants AF 1816314, AF 1645512, and DBI 1759277; and the National Science Foundation PRAC Award ACI-1713695. Part of this research has been enabled by the Blue Waters sustained-petascale computing project, which is supported by the National Science Foundation (Awards OCI-0725070 and ACI-1238993) and the state of Illinois. Blue Waters is a joint effort of the University of Illinois at Urbana–Champaign and its National Center for Supercomputing Applications. This work was funded by Division of Computing and Communication Foundations (Grant No. AF 1816314).

Author information

Correspondence to Dima Kozakov.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 196 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kotelnikov, S., Alekseenko, A., Liu, C. et al. Sampling and refinement protocols for template-based macrocycle docking: 2018 D3R Grand Challenge 4. J Comput Aided Mol Des 34, 179–189 (2020). https://doi.org/10.1007/s10822-019-00257-1

Download citation

Keywords

  • D3R
  • Protein–ligand docking
  • Template-based docking
  • Macrocycles
  • BACE-1