Advertisement

Evaluating the performance of MM/PBSA for binding affinity prediction using class A GPCR crystal structures

  • Mei Qian Yau
  • Abigail L. Emtage
  • Nathaniel J. Y. Chan
  • Stephen W. Doughty
  • Jason S. E. LooEmail author
Article

Abstract

The recent expansion of GPCR crystal structures provides the opportunity to assess the performance of structure-based drug design methods for the GPCR superfamily. Molecular Mechanics/Poisson-Boltzmann Surface Area (MM/PBSA)-based methods are commonly used for binding affinity prediction, as they provide an intermediate compromise of speed and accuracy between the empirical scoring functions used in docking and more robust free energy perturbation methods. In this study, we systematically assessed the performance of MM/PBSA in predicting experimental binding free energies using twenty Class A GPCR crystal structures and 934 known ligands. Correlations between predicted and experimental binding free energies varied significantly between individual targets, ranging from r = − 0.334 in the inactive-state CB1 cannabinoid receptor to r = 0.781 in the active-state CB1 cannabinoid receptor, while average correlation across all twenty targets was relatively poor (r = 0.183). MM/PBSA provided better predictions of binding free energies compared to docking scores in eight out of the twenty GPCR targets while performing worse for four targets. MM/PBSA binding affinity predictions calculated using a single, energy minimized structure provided comparable predictions to sampling from molecular dynamics simulations and may be more efficient when computational cost becomes restrictive. Additionally, we observed that restricting MM/PBSA calculations to ligands with a high degree of structural similarity to the crystal structure ligands improved performance in several cases. In conclusion, while MM/PBSA remains a valuable tool for GPCR structure-based drug design, its performance in predicting the binding free energies of GPCR ligands remains highly system-specific as demonstrated in a subset of twenty Class A GPCRs, and validation of MM/PBSA-based methods for each individual case is recommended before prospective use.

Keywords

GPCR MM/PBSA Docking Binding affinity 

Abbreviations

5-HT2B

5-Hydroxytryptamine 2B receptor

A2AAR

Adenosine A2A receptor

M1R

Muscarinic acetylcholine 1 receptor

M3R

Muscarinic acetylcholine 3 receptor

M4R

Muscarinic acetylcholine 4 receptor

β1AR

Beta-1 receptor

β2AR

Beta-2 receptor

CB1

Cannabinoid 1 receptor

D3R

Dopamine 3 receptor

D4R

Dopamine 4 receptor

EM

Energy minimized

GPCR

G protein-coupled receptor

H1R

Histamine 1 receptor

Ki

Inhibitory constant

MD

Molecular dynamics

MM/PBSA

Molecular Mechanics/Poisson Boltzmann Surface Area

δ-OR

Delta opioid receptor

μ-OR

mu opioid receptor

N/OFQ-OR

Nociception/orphanin FQ receptor

P2Y12

Purinergic receptor

PDB

Protein Data Bank

r

Pearson correlation coefficient

SBDD

Structure-based drug design

Notes

Author contributions

All authors gave approval to the final version of the manuscript.

Funding

This research was supported by Taylor’s University through its Taylor’s University Flagship Research Grant Scheme under grant number TUFR/2017/002/10 and Taylor’s PhD Scholarship Program.

Compliance with ethical standards

Conflict of interest

The authors declare no conflict of interest.

Supplementary material

10822_2019_201_MOESM1_ESM.pdf (294 kb)
Supplementary material 1. The full list of ligands used in the datasets is available as supporting information (PDF 293 kb)

References

  1. 1.
    Katritch V, Cherezov V, Stevens RC (2013) Structure-function of the G protein-coupled receptor superfamily. Annu Rev Pharmacol Toxicol 53:531–556.  https://doi.org/10.1146/annurev-pharmtox-032112-135923.Structure-Function CrossRefGoogle Scholar
  2. 2.
    Sriram K, Insel PA (2018) GPCRs as targets for approved drugs: how many targets and how many drugs? Mol Pharmacol.  https://doi.org/10.1124/mol.117.111062 Google Scholar
  3. 3.
    Fredriksson R, Lagerström MC, Lundin L-G, Schiöth HB (2003) The G-protein-coupled receptors in the human genome form five main families. Phylogenetic analysis, paralogon groups, and fingerprints. Mol Pharmacol 63:1256–1272.  https://doi.org/10.1124/mol.63.6.1256 CrossRefGoogle Scholar
  4. 4.
    Ghosh E, Kumari P, Jaiman D, Shukla AK (2015) Methodological advances: the unsung heroes of the GPCR structural revolution. Nat Rev Mol Cell Biol 16:69–81.  https://doi.org/10.1038/nrm3933 CrossRefGoogle Scholar
  5. 5.
    Palczewski K, Kumasaka T, Hori T et al (2000) Crystal structure of rhodopsin: a G protein–coupled receptor. Science 289:739–745.  https://doi.org/10.1126/science.289.5480.739 CrossRefGoogle Scholar
  6. 6.
    Cherezov V, Rosenbaum DM, Hanson MA et al (2007) High-resolution crystal structure of an engineered human β2-adrenergic G protein-coupled receptor. Science 318:1258–1266.  https://doi.org/10.1126/science.1150577 CrossRefGoogle Scholar
  7. 7.
    Rasmussen SGF, Choi H-J, Rosenbaum DM et al (2007) Crystal structure of the human β2 adrenergic G-protein-coupled receptor. Nature 450:383–387.  https://doi.org/10.1038/nature06325 CrossRefGoogle Scholar
  8. 8.
    Pándy-Szekeres G, Munk C, Tsonkov TM et al (2018) GPCRdb in 2018: adding GPCR structure models and ligands. Nucleic Acids Res 46:D440–D446.  https://doi.org/10.1093/nar/gkx1109 CrossRefGoogle Scholar
  9. 9.
    Michino M, Abola E, Brooks CL et al (2009) Community-wide assessment of GPCR structure modelling and ligand docking: GPCR Dock 2008. Nat Rev Drug Discov 8:455–463.  https://doi.org/10.1038/nrd2877 CrossRefGoogle Scholar
  10. 10.
    Beuming T, Sherman W (2012) Current assessment of docking into GPCR crystal structures and homology models: successes, challenges, and guidelines. J Chem Inf Model 52:3263–3277.  https://doi.org/10.1021/ci300411b CrossRefGoogle Scholar
  11. 11.
    Loo JSE, Emtage AL, Ng KW et al (2018) Assessing GPCR homology models constructed from templates of various transmembrane sequence identities: binding mode prediction and docking enrichment. J Mol Graph Model 80:38–47.  https://doi.org/10.1016/j.jmgm.2017.12.017 CrossRefGoogle Scholar
  12. 12.
    Kollman PA, Massova I, Reyes C et al (2000) Calculating structures and free energies of complex molecules: combining molecular mechanics and continuum models. Acc Chem Res 33:889–897.  https://doi.org/10.1021/ar000033 CrossRefGoogle Scholar
  13. 13.
    Genheden S, Ryde U (2015) The MM/PBSA and MM/GBSA methods to estimate ligand-binding affinities. Expert Opin Drug Discov 10:449–461.  https://doi.org/10.1517/17460441.2015.1032936 CrossRefGoogle Scholar
  14. 14.
    Wang J, Morin P, Wang W, Kollman PA (2001) Use of MM-PBSA in reproducing the binding free energies to HIV-1 RT of TIBO derivatives and predicting the binding mode to HIV-1 RT of Efavirenz by docking and MM-PBSA. J Am Chem Soc 123:5221–5230.  https://doi.org/10.1021/ja003834q CrossRefGoogle Scholar
  15. 15.
    Huo S, Wang J, Cieplak P et al (2002) Molecular dynamics and free energy analyses of cathepsin D-inhibitor interactions: insight into structure-based ligand design. J Med Chem 45:1412–1419.  https://doi.org/10.1142/S0219633609005131 CrossRefGoogle Scholar
  16. 16.
    Bonnet P, Bryce RA (2005) Scoring binding affinity of multiple ligands using implicit solvent and a single molecular dynamics trajectory: application to Influenza neuraminidase. J Mol Graph Model 24:147–156.  https://doi.org/10.1016/j.jmgm.2005.06.003 CrossRefGoogle Scholar
  17. 17.
    Wang W, Lim WA, Jakalian A et al (2001) An analysis of the interactions between the sem—5 SH3 domain and its ligands using molecular dynamics, free energy calculations, and sequence analysis. J Am Chem Soc 123:3986–3994.  https://doi.org/10.1021/ja003164o CrossRefGoogle Scholar
  18. 18.
    Chéron N, Shakhnovich EI (2017) Effect of sampling on BACE-1 ligands binding free energy predictions via MM-PBSA calculations. J Comput Chem 38:1941–1951.  https://doi.org/10.1002/jcc.24839 CrossRefGoogle Scholar
  19. 19.
    Rastelli G, Del Rio A, Degliesposti G, Sgobba M (2010) Fast and Accurate predictions of binding free energies using MM-PBSA and MM-GBSA. J Comput Chem 31:797–810.  https://doi.org/10.1002/jcc.21372 Google Scholar
  20. 20.
    Ferrari AM, Degliesposti G, Sgobba M, Rastelli G (2007) Validation of an automated procedure for the prediction of relative free energies of binding on a set of aldose reductase inhibitors. Bioorg Med Chem 15:7865–7877.  https://doi.org/10.1016/j.bmc.2007.08.019 CrossRefGoogle Scholar
  21. 21.
    Kuhn B, Kollman PA (2000) Binding of a diverse set of ligands to avidin and streptavidin: an accurate quantitative prediction of their relative affinities by a combination of molecular mechanics and continuum solvent models. J Med Chem 43:3786–3791.  https://doi.org/10.1021/jm000241h CrossRefGoogle Scholar
  22. 22.
    Pearlman D (2005) Evaluating the molecular mechanics Poisson—Boltzmann surface area free energy method using a congeneric series of ligands to p38 MAP kinase. J Med Chem 48:7796–7807.  https://doi.org/10.1021/jm050306m CrossRefGoogle Scholar
  23. 23.
    Singh N, Warshel A (2010) Absolute binding free energy calculations: on the accuracy of computational scoring of protein-ligand interactions. Proteins 78:1705–1723.  https://doi.org/10.1002/prot.22687 Google Scholar
  24. 24.
    Kuhn B, Gerber P, Schulz-Gasch T, Stahl M (2005) Validation and use of the MM-PBSA approach for drug discovery. J Med Chem 48:4040–4048.  https://doi.org/10.1021/jm049081q CrossRefGoogle Scholar
  25. 25.
    Hou T, Wang J, Li Y, Wang W (2011) Assessing the performance of the MM/PBSA and MM/GBSA methods. 1. The accuracy of binding free energy calculations based on molecular dynamics simulations. J Chem Inf Model 51:69–82.  https://doi.org/10.1021/ci100275a CrossRefGoogle Scholar
  26. 26.
    Sun H, Li Y, Tian S et al (2014) Assessing the performance of MM/PBSA and MM/GBSA methods. 4. Accuracies of MM/PBSA and MM/GBSA methodologies evaluated by various simulation protocols using PDBbind data set. Phys Chem Chem Phys 16:16719.  https://doi.org/10.1039/C4CP01388C CrossRefGoogle Scholar
  27. 27.
    Xu L, Sun H, Li Y et al (2013) Assessing the performance of MM/PBSA and MM/GBSA methods. 3. The impact of force fields and ligand charge models. J Phys Chem B 117:8408–8421.  https://doi.org/10.1021/jp404160y CrossRefGoogle Scholar
  28. 28.
    Wang C, Nguyen PH, Pham K et al (2016) Calculating protein–ligand binding affinities with MMPBSA: method and error analysis. J Comput Chem 37:2436–2446.  https://doi.org/10.1002/jcc.24467 CrossRefGoogle Scholar
  29. 29.
    Yang T, Wu JC, Yan C et al (2011) Virtual screening using molecular simulations. Proteins 79:1940–1951.  https://doi.org/10.1002/prot.23018 CrossRefGoogle Scholar
  30. 30.
    Anighoro A, Rastelli G (2013) Enrichment factor analyses on g-protein coupled receptors with known crystal structure. J Chem Inf Model 53:739–743.  https://doi.org/10.1021/ci4000745 CrossRefGoogle Scholar
  31. 31.
    Berman HM, Westbrook J, Feng Z et al (2000) The protein data bank. Nucleic Acids Res 28:235–242.  https://doi.org/10.1093/nar/28.1.235 CrossRefGoogle Scholar
  32. 32.
    Maestro, Schrödinger, LLC, New York, NY, 2018Google Scholar
  33. 33.
    Shelley JC, Cholleti A, Frye LL et al (2007) Epik: a software program for pKa prediction and protonation state generation for drug-like molecules. J Comput Aided Mol Des 21:681–691.  https://doi.org/10.1007/s10822-007-9133-z CrossRefGoogle Scholar
  34. 34.
    Jacobson MP, Friesner RA, Xiang Z, Honig B (2002) On the role of the crystal environment in determining protein side-chain conformations. J Mol Biol 320:597–608.  https://doi.org/10.1016/S0022-2836(02)00470-9 CrossRefGoogle Scholar
  35. 35.
    Gaulton A, Hersey A, Nowotka ML et al (2017) The ChEMBL database in 2017. Nucleic Acids Res 45:D945–D954.  https://doi.org/10.1093/nar/gkw1074 CrossRefGoogle Scholar
  36. 36.
    LigPrep, Schrödinger, LLC, New York, NY, 2018Google Scholar
  37. 37.
    Sherman W, Beard HS, Farid R (2006) Use of an induced fit receptor structure in virtual screening. Chem Biol Drug Des 67:83–84.  https://doi.org/10.1111/j.1747-0285.2005.00327.x CrossRefGoogle Scholar
  38. 38.
    Sherman W, Day T, Jacobson MP et al (2006) Novel procedure for modeling ligand/receptor induced fit effects. J Med Chem 49:534–553.  https://doi.org/10.1021/jm050540c CrossRefGoogle Scholar
  39. 39.
    Cheng T, Li X, Li Y et al (2009) Comparative assessment of scoring functions on a diverse test set. J Chem Inf Model 49:1079–1093.  https://doi.org/10.1021/ci9000053 CrossRefGoogle Scholar
  40. 40.
    Ferrara P, Gohlke H, Price DJ et al (2004) Assessing scoring functions for protein–ligand interactions. J Med Chem 47:3032–3047CrossRefGoogle Scholar
  41. 41.
    Plewczynski D, Lazniewski M, Augustyniak R, Ginalski K (2011) Can we trust docking results? Evaluation of seven commonly used programs on PDBbind database. J Comput Chem 32:742–755.  https://doi.org/10.1002/jcc CrossRefGoogle Scholar
  42. 42.
    Wang R, Lu Y, Fang X, Wang S (2004) An extensive test of 14 scoring functions using the PDBbind refined set of 800 protein–ligand complexes. J Chem Inf Comput Sci 44:2114–2125.  https://doi.org/10.1021/ci049733j CrossRefGoogle Scholar
  43. 43.
    Wang R, Lu Y, Wang S (2003) Comparative evaluation of 11 scoring functions for molecular docking. J Med Chem 46:2287–2303.  https://doi.org/10.1021/Jm0203783 CrossRefGoogle Scholar
  44. 44.
    Warren GL, Andrews CW, Capelli A-M et al (2006) A critical assessment of docking programs and scoring functions. J Med Chem 49:5912–5931.  https://doi.org/10.1021/jm050362n CrossRefGoogle Scholar
  45. 45.
    Wang Z, Sun H, Yao X et al (2016) Comprehensive evaluation of ten docking programs on a diverse set of protein–ligand complexes: the prediction accuracy of sampling power and scoring power. Phys Chem Chem Phys 18:12964–12975.  https://doi.org/10.1039/c6cp01555g CrossRefGoogle Scholar
  46. 46.
    Abraham MJ, Hess B, van der Spoel D, Lindahl E (2018) GROMACS user manual version 2018Google Scholar
  47. 47.
    Lindorff-Larsen K, Piana S, Palmo K et al (2010) Improved side-chain torsion potentials for the Amber ff99SB protein force field. Proteins 78:1950–1958.  https://doi.org/10.1002/prot.22711 Google Scholar
  48. 48.
    Wang J, Wolf RM, Caldwell JW et al (2004) Development and testing of a general amber force field. J Comput Chem 25:1157–1174.  https://doi.org/10.1002/jcc.20035 CrossRefGoogle Scholar
  49. 49.
    Sousa Da Silva AW, Vranken WF (2012) ACPYPE—AnteChamber PYthon parser interface. BMC Res Notes 5:367.  https://doi.org/10.1186/1756-0500-5-367 CrossRefGoogle Scholar
  50. 50.
    Darden T, York D, Pedersen L (1993) Particle mesh Ewald: an N log(N) method for Ewald sums in large systems. J Chem Phys 98:10089–10092.  https://doi.org/10.1063/1.464397 CrossRefGoogle Scholar
  51. 51.
    Hess B (2008) P-LINCS: a parallel linear constraint solver for molecular simulation. J Chem Theory Comput 4:116–122.  https://doi.org/10.1021/ct700200b CrossRefGoogle Scholar
  52. 52.
    Hess B, Bekker H, Berendsen HJC, Fraaije JJGEM (1997) LINCS: a linear constraint solver for molecular simulations. J Comput Chem 18:1463–1472.  https://doi.org/10.1002/(SICI)1096-987X(199709)18:12%3c1463:AID-JCC4%3e3.0.CO;2-H CrossRefGoogle Scholar
  53. 53.
    Jorgensen WL, Chandrasekhar J, Madura JD et al (1983) Comparison of simple potential functions for simulating liquid water. J Chem Phys 79:926–935.  https://doi.org/10.1063/1.445869 CrossRefGoogle Scholar
  54. 54.
    Berendsen HJC, Postma JPM, van Gunsteren WF et al (1984) Molecular dynamics with coupling to an external bath. J Chem Phys 81:3684–3690.  https://doi.org/10.1063/1.448118 CrossRefGoogle Scholar
  55. 55.
    Nosé S, Klein ML (1983) Constant pressure molecular dynamics for molecular systems. Mol Phys 50:1055–1076.  https://doi.org/10.1080/00268978300102851 CrossRefGoogle Scholar
  56. 56.
    Bussi G, Donadio D, Parrinello M (2007) Canonical sampling through velocity-rescaling. J Chem Phys 126:1–8.  https://doi.org/10.1063/1.2408420 CrossRefGoogle Scholar
  57. 57.
    Kumari R, Kumar R, Lynn A (2014) G-mmpbsa -A GROMACS tool for high-throughput MM-PBSA calculations. J Chem Inf Model 54:1951–1962.  https://doi.org/10.1021/ci500020m CrossRefGoogle Scholar
  58. 58.
    Wang W, Kollman PA (2000) Free Energy calculations on dimer stability of the HIV protease using molecular dynamics and a continuum solvent model. J Mol Biol 303:567–582.  https://doi.org/10.1006/jmbi.2000.4057 CrossRefGoogle Scholar
  59. 59.
    Sun H, Li Y, Shen M et al (2014) Assessing the performance of MM/PBSA and MM/GBSA methods. 5. Improved docking performance by using high solute dielectric constant MM/GBSA and MM/PBSA rescoring. Phys Chem Chem Phys 16:22035–22045.  https://doi.org/10.1039/C4CP03179B CrossRefGoogle Scholar
  60. 60.
    Jacobson KA (2013) Crystal structures of the A2A adenosine receptor and their use in medicinal chemistry. Silico Pharmacol 1:22.  https://doi.org/10.1186/2193-9616-1-22 CrossRefGoogle Scholar
  61. 61.
    Weis A, Katebzadeh K, Söderhjelm P et al (2006) Ligand affinities Predicted with the MM/PBSA method: dependence on the simulation method and the force field. J Med Chem 49:6596–6606.  https://doi.org/10.1021/jm0608210 CrossRefGoogle Scholar
  62. 62.
    Liu Z, Li Y, Han L et al (2015) PDB-wide collection of binding data: current status of the PDBbind database. Bioinformatics 31:405–412.  https://doi.org/10.1093/bioinformatics/btu626 CrossRefGoogle Scholar
  63. 63.
    Chaput L, Martinez-Sanz J, Saettel N, Mouawad L (2016) Benchmark of four popular virtual screening programs: construction of the active/decoy dataset remains a major determinant of measured performance. J Cheminform 8:1–17.  https://doi.org/10.1186/s13321-016-0167-x CrossRefGoogle Scholar
  64. 64.
    Durant JL, Leland BA, Henry DR, Nourse JG (2002) Reoptimization of MDL keys for use in drug discovery. J Chem Inf Comput Sci 42:1273–1280.  https://doi.org/10.1021/ci010132r CrossRefGoogle Scholar
  65. 65.
    Maffucci I, Contini A (2013) Explicit ligand hydration shells improve the correlation between MM-PB/GBSA binding energies and experimental activities. J Chem Theory Comput 9:2706–2717.  https://doi.org/10.1021/ct400045d CrossRefGoogle Scholar
  66. 66.
    Zhu YL, Beroza P, Artis DR (2014) Including explicit water molecules as part of the protein structure in MM/PBSA calculations. J Chem Inf Model 54:462–469.  https://doi.org/10.1021/ci4001794 CrossRefGoogle Scholar
  67. 67.
    Yang T, Wu JC, Yan C et al (2011) Virtual screening using molecular simulations. Proteins Struct Funct Bioinf 79:1940–1951.  https://doi.org/10.1002/prot.23018 CrossRefGoogle Scholar
  68. 68.
    Oehme DP, Brownlee RTC, Wilson DJD (2012) Effect of atomic charge, solvation, entropy, and ligand protonation state on MM-PB(GB)SA binding energies of HIV protease. J Comput Chem 33:2566–2580.  https://doi.org/10.1002/jcc.23095 CrossRefGoogle Scholar
  69. 69.
    Su PC, Tsai CC, Mehboob S et al (2015) Comparison of radii sets, entropy, QM methods, and sampling on MM-PBSA, MM-GBSA, and QM/MM-GBSA ligand binding energies of F. tularensis enoyl-ACP reductase (FabI). J Comput Chem 36:1859–1873.  https://doi.org/10.1002/jcc.24011 CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.School of Pharmacy, Faculty of Health and Medical SciencesTaylor’s UniversitySubang JayaMalaysia
  2. 2.School of PharmacyThe University of Nottingham Malaysia CampusSemenyihMalaysia
  3. 3.RCSI and UCD Malaysia CampusGeorge TownMalaysia

Personalised recommendations