Advertisement

Journal of Computer-Aided Molecular Design

, Volume 33, Issue 5, pp 509–519 | Cite as

Elucidating the druggability of the human proteome with eFindSite

  • Omar Kana
  • Michal BrylinskiEmail author
Article

Abstract

Identifying the viability of protein targets is one of the preliminary steps of drug discovery. Determining the ability of a protein to bind drugs in order to modulate its function, termed the druggability, requires a non-trivial amount of time and resources. Inability to properly measure druggability has accounted for a significant portion of failures in drug discovery. This problem is only further exacerbated by the large sample space of proteins involved in human diseases. With these barriers, the druggability space within the human proteome remains unexplored and has made it difficult to develop drugs for numerous diseases. Hence, we present a new feature developed in eFindSite that employs supervised machine learning to predict the druggability of a given protein. Benchmarking calculations against the Non-Redundant data set of Druggable and Less Druggable binding sites demonstrate that an AUC for druggability prediction with eFindSite is as high as 0.88. With eFindSite, we elucidated the human druggability space to be 10,191 proteins. Considering the disease space from the Open Targets Platform and excluding already known targets from the predicted data set reveal 2731 potentially novel therapeutic targets. eFindSite is freely available as a stand-alone software at https://github.com/michal-brylinski/efindsite.

Keywords

Druggability prediction Human proteome Drug targets Pocket prediction Structural bioinformatics Molecular modeling eFindSite 

Notes

Acknowledgements

Research reported in this publication was supported by the National Institute of General Medical Sciences of the National Institutes of Health under Award Number R35GM119524. Portions of this research were conducted with computing resources provided by Louisiana State University.

References

  1. 1.
    Abi Hussein H, Geneix C, Petitjean M, Borrel A, Flatters D, Camproux AC (2017) Drug Discov Today 22(2):404PubMedCrossRefGoogle Scholar
  2. 2.
    DiMasi JA, Grabowski HG, Hansen RW (2016) J Health Econ 47:20PubMedCrossRefGoogle Scholar
  3. 3.
    Lamberti MJ, Getz KA (2015) White paper: Tufts Center for the Study of Drug Development, Boston, MAGoogle Scholar
  4. 4.
    Gaulton A, Bellis LJ, Bento AP, Chambers J, Davies M, Hersey A, Light Y, McGlinchey S, Michalovich D, Al-Lazikani B, Overington JP (2012) Nucleic Acids Res 40(Database issue):D1100PubMedCrossRefGoogle Scholar
  5. 5.
    Santos R, Ursu O, Gaulton A, Bento AP, Donadi RS, Bologa CG, Karlsson A, Al-Lazikani B, Hersey A, Oprea TI, Overington JP (2017) Nat Rev Drug Discov 16(1):19PubMedCrossRefGoogle Scholar
  6. 6.
    Brown D, Superti-Furga G (2003) Drug Discov Today 8(23):1067PubMedCrossRefGoogle Scholar
  7. 7.
    Bohacek RS, McMartin C, Guida WC (1996) Med Res Rev 16(1):3PubMedCrossRefGoogle Scholar
  8. 8.
    Shuker SB, Hajduk PJ, Meadows RP, Fesik SW (1996) Science 274(5292):1531PubMedCrossRefGoogle Scholar
  9. 9.
    Edfeldt FN, Folmer RH, Breeze AL (2011) Drug Discov Today 16(7–8):284PubMedCrossRefGoogle Scholar
  10. 10.
    Hopkins AL, Groom CR (2002) Nat Rev Drug Discov 1(9):727PubMedCrossRefGoogle Scholar
  11. 11.
    Koscielny G, An P, Carvalho-Silva D, Cham JA, Fumis L, Gasparyan R, Hasan S, Karamanis N, Maguire M, Papa E, Pierleoni A, Pignatelli M, Platt T, Rowland F, Wankar P, Bento AP, Burdett T, Fabregat A, Forbes S, Gaulton A, Gonzalez CY, Hermjakob H, Hersey A, Jupe S, Kafkas S, Keays M, Leroy C, Lopez FJ, Magarinos MP, Malone J, McEntyre J, Munoz-Pomer Fuentes A, O’Donovan C, Papatheodorou I, Parkinson H, Palka B, Paschall J, Petryszak R, Pratanwanich N, Sarntivijal S, Saunders G, Sidiropoulos K, Smith T, Sondka Z, Stegle O, Tang YA, Turner E, Vaughan B, Vrousgou O, Watkins X, Martin MJ, Sanseau P, Vamathevan J, Birney E, Barrett J, Dunham I (2017) Nucleic Acids Res 45(D1):D985PubMedCrossRefGoogle Scholar
  12. 12.
    Lipinski CA, Lombardo F, Dominy BW, Feeney PJ (2001) Adv Drug Deliv Rev 46(1–3):3PubMedCrossRefGoogle Scholar
  13. 13.
    Ringe D (1995) Curr Opin Struct Biol 5(6):825PubMedCrossRefGoogle Scholar
  14. 14.
    Hajduk PJ, Huth JR, Fesik SW (2005) J Med Chem 48(7):2518PubMedCrossRefGoogle Scholar
  15. 15.
    Craik DJ, Smith PA, Clark RJ (2010) NMR-based screening and drug discovery. In: Abraham DJ (ed). Burger’s medicinal chemistry and drug discovery. Wiley, HobokenGoogle Scholar
  16. 16.
    Aretz J, Kondoh Y, Honda K, Anumala UR, Nazare M, Watanabe N, Osada H, Rademacher C (2016) Chem Commun (Camb) 52(58):9067CrossRefGoogle Scholar
  17. 17.
    Vukovic S, Huggins DJ (2018) Drug Discov Today 23(6):1258PubMedCrossRefGoogle Scholar
  18. 18.
    Somody JC, MacKinnon SS, Windemuth A (2017) Drug Discov Today 22(12):1792PubMedCrossRefGoogle Scholar
  19. 19.
    Brylinski M, Feinstein WP (2013) J Comput Aided Mol Des 27(6):551PubMedCrossRefGoogle Scholar
  20. 20.
    Feinstein WP, Brylinski M (2014) Mol Inform 33(2):135PubMedCrossRefGoogle Scholar
  21. 21.
    Borrel A, Regad L, Xhaard H, Petitjean M, Camproux AC (2015) J Chem Inf Model 55(4):882PubMedCrossRefGoogle Scholar
  22. 22.
    Schmidtke P, Barril X (2010) J Med Chem 53(15):5858PubMedCrossRefGoogle Scholar
  23. 23.
    Kyte J, Doolittle RF (1982) J Mol Biol 157(1):105PubMedCrossRefGoogle Scholar
  24. 24.
    Cammisa M, Correra A, Andreotti G, Cubellis MV (2013) BMC Bioinformatics 14 (Suppl 7):S9PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Krasowski A, Muthas D, Sarkar A, Schmitt S, Brenk R (2011) J Chem Inf Model 51(11):2829PubMedCrossRefGoogle Scholar
  26. 26.
    Humphrey W, Dalke A, Schulten K (1996) J Mol Graph 14(1):33PubMedCrossRefGoogle Scholar
  27. 27.
    Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, Bourne PE (2000) Nucleic Acids Res 28(1):235PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Zhang Y, Skolnick J (2004) Proteins 57(4):702PubMedCrossRefGoogle Scholar
  29. 29.
    Soga S, Shirai H, Kobori M, Hirayama N (2007) J Chem Inf Model 47(2):400PubMedCrossRefGoogle Scholar
  30. 30.
    Millman KJ (2015) Permute—a Python package for permutation tests and confidence sets. University of California, Berkeley, 2015Google Scholar
  31. 31.
    Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, Blondel M, Prettenhofer P, Weiss R, Dubourg V, Vanderplas J, Passos A, Cournapeau D, Brucher M, Perrot M, Duchesnay E (2011) J Mach Learn Res 12:2825Google Scholar
  32. 32.
    Böhning D (1992) Ann Inst Statist Math 44(1):197CrossRefGoogle Scholar
  33. 33.
    Matthews BW (1975) Biochim Biophys Acta 405(2):442PubMedCrossRefGoogle Scholar
  34. 34.
    Le Guilloux V, Schmidtke P, Tuffery P (2009) BMC Bioinformatics 10:168PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Kellenberger E, Muller P, Schalon C, Bret G, Foata N, Rognan D (2006) J Chem Inf Model 46(2):717PubMedCrossRefGoogle Scholar
  36. 36.
    Schneider VA, Graves-Lindsay T, Howe K, Bouk N, Chen HC, Kitts PA, Murphy TD, Pruitt KD, Thibaud-Nissen F, Albracht D, Fulton RS, Kremitzki M, Magrini V, Markovic C, McGrath S, Steinberg KM, Auger K, Chow W, Collins J, Harden G, Hubbard T, Pelan S, Simpson JT, Threadgold G, Torrance J, Wood JM, Clarke L, Koren S, Boitano M, Peluso P, Li H, Chin CS, Phillippy AM, Durbin R, Wilson RK, Flicek P, Eichler EE, Church DM (2017) Genome Res 27(5):849PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Aken BL, Achuthan P, Akanni W, Amode MR, Bernsdorff F, Bhai J, Billis K, Carvalho-Silva D, Cummins C, Clapham P, Gil L, Giron CG, Gordon L, Hourlier T, Hunt SE, Janacek SH, Juettemann T, Keenan S, Laird MR, Lavidas I, Maurel T, McLaren W, Moore B, Murphy DN, Nag R, Newman V, Nuhn M, Ong CK, Parker A, Patricio M, Riat HS, Sheppard D, Sparrow H, Taylor K, Thormann A, Vullo A, Walts B, Wilder SP, Zadissa A, Kostadima M, Martin FJ, Muffato M, Perry E, Ruffier M, Staines DM, Trevanion SJ, Cunningham F, Yates A, Zerbino DR, Flicek P (2017) Nucleic Acids Res 45(D1):D635PubMedCrossRefGoogle Scholar
  38. 38.
    Brylinski M, Lingam D (2012) PLoS ONE 7(11):e50200PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Wang Z, Tegge AN, Cheng J (2009) Proteins 75(3):638PubMedCrossRefGoogle Scholar
  40. 40.
    Zemla A (2003) Nucleic Acids Res 31(13):3370PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Sterling T, Irwin JJ (2015) J Chem Inf Model 55(11):2324PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Wishart DS, Feunang YD, Guo AC, Lo EJ, Marcu A, Grant JR, Sajed T, Johnson D, Li C, Sayeeda Z, Assempour N, Iynkkaran I, Liu Y, Maciejewski A, Gale N, Wilson A, Chin L, Cummings R, Le D, Pon A, Knox C, Wilson M (2018) Nucleic Acids Res 46(D1):D1074PubMedCrossRefGoogle Scholar
  43. 43.
    Liu X, Hanson BL, Langan P, Viola RE (2007) Acta Crystallogr D Biol Crystallogr 63(Pt 9):1000PubMedCrossRefGoogle Scholar
  44. 44.
    Brylinski M (2013) J Chem Inf Model 53(11):3097PubMedCrossRefGoogle Scholar
  45. 45.
    Barends TR, Polderman-Tijmes JJ, Jekel PA, Williams C, Wybenga G, Janssen DB, Dijkstra BW (2006) J Biol Chem 281(9):5804PubMedCrossRefGoogle Scholar
  46. 46.
    Oster L, Tapani S, Xue Y, Kack H (2015) Drug Discov Today 20(9):1104PubMedCrossRefGoogle Scholar
  47. 47.
    Tanimoto TT. An elementary mathematical theory of classification and prediction. IBM Internal Report, 1958Google Scholar
  48. 48.
    Kawabata T (2011) J Chem Inf Model 51(8):1775PubMedCrossRefGoogle Scholar
  49. 49.
    Brylinski M (2018) Chem Biol Drug Des 91(2):380PubMedCrossRefGoogle Scholar
  50. 50.
    Sobolev V, Sorokine A, Prilusky J, Abola EE, Edelman M (1999) Bioinformatics 15(4):327PubMedCrossRefGoogle Scholar
  51. 51.
    Ikushiro H, Islam MM, Okamoto A, Hoseki J, Murakawa T, Fujii S, Miyahara I, Hayashi H (2009) J Biochem 146(4):549PubMedCrossRefGoogle Scholar
  52. 52.
    Sato D, Shiba T, Karaki T, Yamagata W, Nozaki T, Nakazawa T, Harada S (2017) Sci Rep 7(1):4874PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Biological SciencesLouisiana State UniversityBaton RougeUSA
  2. 2.Center for Computation & TechnologyLouisiana State UniversityBaton RougeUSA

Personalised recommendations