Advertisement

Uncovering abnormal changes in logP after fluorination using molecular dynamics simulations

  • Kai Liu
  • Hironori KokuboEmail author
Article
  • 62 Downloads

Abstract

The fluorination-induced changes in the logP (1-octanol/water partition coefficient) of ligands were examined by molecular dynamics simulations. The protocol and force field parameters were first evaluated by calculating the logP values for n-alkanes, and their monofluorinated and monochlorinated analogs. Then, the logP values of several test sets (1-butanol, 3-propyl-1H-indole, and analogs fluorinated at the terminal methyl group) were calculated. The calculated results agree well with experiment, and the root mean square error values are 0.61 and 0.68 log units for the GAFF and GAFF2 force fields, respectively. Finally, the logP estimation was extended to a drug molecule, TAK-438, for which fluorination-induced abnormal logP reduction has been observed experimentally. This abnormal change was qualitatively reproduced by the molecular dynamics simulations. We found that the abnormal logP reduction can be mainly attributed to the effect of fluorination-induced dipole change. Our results suggest that molecular simulation is a useful strategy to predict the fluorination-induced change in logP for drug discovery applications.

Keywords

logP Fluorination Molecular dynamics Solvation free energy calculation 

Notes

Acknowledgements

The authors are grateful to Terufumi Takagi for carefully reading the manuscript and making valuable suggestions and comments. This study used computational resources of the HPCI system provided by the TSUBAME Grid Cluster at the Global Scientific Information and Computing Center of Tokyo Institute of Technology through the HPCI System Research Project (Project ID hp170026).

Supplementary material

10822_2018_183_MOESM1_ESM.docx (868 kb)
Supplementary material 1 (DOCX 868 KB)

References

  1. 1.
    O’Hagan D (2010) Fluorine in health care: organofluorine containing blockbuster drugs. J Fluorine Chem 131(11):1071–1081CrossRefGoogle Scholar
  2. 2.
    Wang J, Sanchez-Rosello M, Acena JL, del Pozo C, Sorochinsky AE, Fustero S, Soloshonok VA, Liu H (2014) Fluorine in pharmaceutical industry: fluorine-containing drugs introduced to the market in the last decade (2001–2011). Chem Rev 114(4):2432–2506PubMedCrossRefGoogle Scholar
  3. 3.
    Zhou Y, Wang J, Gu Z, Wang S, Zhu W, Acena JL, Soloshonok VA, Izawa K, Liu H (2016) Next generation of fluorine-containing pharmaceuticals, compounds currently in phase II-III clinical trials of major pharmaceutical companies: new structural trends and therapeutic areas. Chem Rev 116(2):422–518PubMedCrossRefGoogle Scholar
  4. 4.
    Smart BE (2001) Fluorine substituent effects (on bioactivity). J Fluorine Chem 109(1):3–11CrossRefGoogle Scholar
  5. 5.
    Bohm HJ, Banner D, Bendels S, Kansy M, Kuhn B, Muller K, Obst-Sander U, Stahl M (2004) Fluorine in medicinal chemistry. ChemBioChem 5(5):637–643PubMedCrossRefGoogle Scholar
  6. 6.
    Muller K, Faeh C, Diederich F (2007) Fluorine in pharmaceuticals: looking beyond intuition. Science 317(5846):1881–1886PubMedCrossRefGoogle Scholar
  7. 7.
    Hagmann WK (2008) The many roles for fluorine in medicinal chemistry. J Med Chem 51(15):4359–4369PubMedCrossRefGoogle Scholar
  8. 8.
    Purser S, Moore PR, Swallow S, Gouverneur V (2008) Fluorine in medicinal chemistry. Chem Soc Rev 37(2):320–330PubMedCrossRefGoogle Scholar
  9. 9.
    Gillis EP, Eastman KJ, Hill MD, Donnelly DJ, Meanwell NA (2015) Applications of fluorine in medicinal chemistry. J Med Chem 58(21):8315–8359PubMedCrossRefGoogle Scholar
  10. 10.
    Swallow S (2015) Fluorine in medicinal chemistry. Prog Med Chem 54:65–133PubMedCrossRefGoogle Scholar
  11. 11.
    Yerien DE, Bonesi S, Postigo A (2016) Fluorination methods in drug discovery. Org Biomol Chem 14(36):8398–8427PubMedCrossRefGoogle Scholar
  12. 12.
    Huchet QA, Kuhn B, Wagner B, Fischer H, Kansy M, Zimmerli D, Carreira EM, Müller K (2013) On the polarity of partially fluorinated methyl groups. J Fluorine Chem 152:119–128CrossRefGoogle Scholar
  13. 13.
    Huchet QA, Kuhn B, Wagner B, Kratochwil NA, Fischer H, Kansy M, Zimmerli D, Carreira EM, Muller K (2015) Fluorination patterning: a study of structural motifs that impact physicochemical properties of relevance to drug discovery. J Med Chem 58(22):9041–9060PubMedCrossRefGoogle Scholar
  14. 14.
    Wuitschik G, Carreira EM, Wagner B, Fischer H, Parrilla I, Schuler F, Rogers-Evans M, Muller K (2010) Oxetanes in drug discovery: structural and synthetic insights. J Med Chem 53(8):3227–3246PubMedCrossRefGoogle Scholar
  15. 15.
    Daina A, Michielin O, Zoete V (2014) iLOGP: a simple, robust, and efficient description of n-octanol/water partition coefficient for drug design using the GB/SA approach. J Chem Inform Model 54(12):3284–3301CrossRefGoogle Scholar
  16. 16.
    Wang R, Fu Y, Lai L (1997) A new atom-additive method for calculating partition coefficients. J Chem Inform Comput Sci 37(3):615–621CrossRefGoogle Scholar
  17. 17.
    Cheng T, Zhao Y, Li X, Lin F, Xu Y, Zhang X, Li Y, Wang R, Lai L (2007) Computation of octanol-water partition coefficients by guiding an additive model with knowledge. J Chem Inform Model 47(6):2140–2148CrossRefGoogle Scholar
  18. 18.
    Tetko IV, Tanchuk VY (2002) Application of associative neural networks for prediction of lipophilicity in ALOGPS 2.1 program. J Chem Inform Comput Sci 42(5):1136–1145CrossRefGoogle Scholar
  19. 19.
    Tetko IV, Bruneau P (2004) Application of ALOGPS to predict 1-octanol/water distribution coefficients, logP, and logD, of AstraZeneca in-house database. J Pharm Sci 93(12):3103–3110PubMedCrossRefGoogle Scholar
  20. 20.
    Bgu J-P, Bonnet-Delpon D (2008) Bioorganic and medicinal chemistry of fluorine. Wiley, HobokenCrossRefGoogle Scholar
  21. 21.
    Menear KA, Adcock C, Boulter R, Cockcroft XL, Copsey L, Cranston A, Dillon KJ, Drzewiecki J, Garman S, Gomez S, Javaid H, Kerrigan F, Knights C, Lau A, Loh VM Jr, Matthews IT, Moore S, O’Connor MJ, Smith GC, Martin NM (2008) 4-[3-(4-cyclopropanecarbonylpiperazine-1-carbonyl)-4-fluorobenzyl]-2H-phthalazin- 1-one: a novel bioavailable inhibitor of poly(ADP-ribose) polymerase-1. J Med Chem 51(20):6581–6591PubMedCrossRefGoogle Scholar
  22. 22.
    Arikawa Y, Nishida H, Kurasawa O, Hasuoka A, Hirase K, Inatomi N, Hori Y, Matsukawa J, Imanishi A, Kondo M, Tarui N, Hamada T, Takagi T, Takeuchi T, Kajino M (2012) Discovery of a novel pyrrole derivative 1-[5-(2-fluorophenyl)-1-(pyridin-3-ylsulfonyl)-1H-pyrrol-3-yl]-N-methylmethanamin e fumarate (TAK-438) as a potassium-competitive acid blocker (P-CAB). J Med Chem 55(9):4446–4456PubMedCrossRefGoogle Scholar
  23. 23.
    Jorgensen WL, Briggs JM, Contreras ML (1990) Relative partition coefficients for organic solutes from fluid simulations. J Phys Chem 94(4):1683–1686CrossRefGoogle Scholar
  24. 24.
    Wang J, Wolf RM, Caldwell JW, Kollman PA, Case DA (2004) Development and testing of a general amber force field. J Comput Chem 25(9):1157–1174PubMedCrossRefGoogle Scholar
  25. 25.
    Harder E, Damm W, Maple J, Wu C, Reboul M, Xiang JY, Wang L, Lupyan D, Dahlgren MK, Knight JL, Kaus JW, Cerutti DS, Krilov G, Jorgensen WL, Abel R, Friesner RA (2016) OPLS3: a force field providing broad coverage of drug-like small molecules and proteins. J Chem Theory Comput 12(1):281–296PubMedCrossRefGoogle Scholar
  26. 26.
    Sugita Y, Okamoto Y (1999) Replica-exchange molecular dynamics method for protein folding. Chem Phys Lett 314(1–2):141–151CrossRefGoogle Scholar
  27. 27.
    Okamoto Y, Kokubo H, Tanaka T (2014) Prediction of ligand binding affinity by the combination of replica-exchange method and double-decoupling method. J Chem Theory Comput 10(8):3563–3569PubMedCrossRefGoogle Scholar
  28. 28.
    Steinbrecher T, Mobley DL, Case DA (2007) Nonlinear scaling schemes for Lennard-Jones interactions in free energy calculations. J Chem Phys 127(21):214108PubMedCrossRefGoogle Scholar
  29. 29.
    Bannan CC, Calabro G, Kyu DY, Mobley DL (2016) Calculating partition coefficients of small molecules in octanol/water and cyclohexane/water. J Chem Theory Comput 12(8):4015–4024PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Kirkwood JG (1935) Statistical mechanics of fluid mixtures. J Chem Phys 3(5):300–313CrossRefGoogle Scholar
  31. 31.
    Chipot C, Pohorille A (2007) Free energy calculations: theory and applications in chemistry and biology. Springer, BerlinCrossRefGoogle Scholar
  32. 32.
    Case DA, Betz RM, Cerutti DS, Cheatham TE III, Darden TA, Duke RE, Giese TJ, Gohlke H, Goetz AW, Homeyer N, Izadi S, Janowski P, Kaus J, Kovalenko A, Lee TS, LeGrand S, Li P, Lin C, Luchko T, Luo R, Madej B, Mermelstein D, Merz KM, Monard G, Nguyen H, Nguyen HT, Omelyan I, Onufriev A, Roe DR, Roitberg A, Sagui C, Simmerling CL, Botello-Smith WM, Swails J, Walker RC, Wang J, Wolf RM, Wu X, Xiao L, Kollman PA (2016) AMBER 2016, University of California, San FranciscoGoogle Scholar
  33. 33.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA Jr, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas Ö, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09 Revision C.01. Gaussian Inc., WallingfordGoogle Scholar
  34. 34.
    Wang J, Hou T (2011) Application of molecular dynamics simulations in molecular property prediction I: density and heat of vaporization. J Chem Theory Comput 7(7):2151–2165PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Mobley DL, Guthrie JP (2014) FreeSolv: a database of experimental and calculated hydration free energies, with input files. J Comput Aided Mol Des 28(7):711–720PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Martinez L, Andrade R, Birgin EG, Martinez JM (2009) PACKMOL: a package for building initial configurations for molecular dynamics simulations. J Comput Chem 30(13):2157–2164PubMedCrossRefGoogle Scholar
  37. 37.
    PubChem Identifier: CID 15981397 URL: https://pubchem.ncbi.nlm.nih.gov/compound/15981397
  38. 38.
    Mobley DL, Dumont E, Chodera JD, Dill KA (2007) Comparison of charge models for fixed-charge force fields: small-molecule hydration free energies in explicit solvent. J Phys Chem B 111(9):2242–2254PubMedCrossRefGoogle Scholar
  39. 39.
    Roe DR, Cheatham TE (2013) PTRAJ and CPPTRAJ: software for processing and analysis of molecular dynamics trajectory data. J Chem Theory Comput 9(7):3084–3095PubMedCrossRefGoogle Scholar
  40. 40.
    Haynes WM, Lide DR (2011) CRC handbook of chemistry and physics: a ready-reference book of chemical and physical data, 92nd edn. CRC Press, Boca RatonGoogle Scholar
  41. 41.
    Garrido NM, Queimada AJ, Jorge M, Macedo EA, Economou IG (2009) 1-octanol/water partition coefficients of n-alkanes from molecular simulations of absolute solvation free energies. J Chem Theory Comput 5(9):2436–2446PubMedCrossRefGoogle Scholar
  42. 42.
    Bhatnagar N, Kamath G, Chelst I, Potoff JJ (2012) Direct calculation of 1-octanol-water partition coefficients from adaptive biasing force molecular dynamics simulations. J Chem Phys 137(1):014502PubMedCrossRefGoogle Scholar
  43. 43.
    Fischer NM, van Maaren PJ, Ditz JC, Yildirim A, van der Spoel D (2015) Properties of organic liquids when simulated with long-range lennard-jones interactions. J Chem Theory Comput 11(7):2938–2944PubMedCrossRefGoogle Scholar
  44. 44.
    PhysProp Database (2017) http://esc.syrres.com/fatepointer/search.asp. Accessed 21 Sept 2017
  45. 45.
    Mobley DL, Wymer KL, Lim NM, Guthrie JP (2014) Blind prediction of solvation free energies from the SAMPL4 challenge. J Comput Aided Mol Des 28(3):135–150PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Bannan CC, Burley KH, Chiu M, Shirts MR, Gilson MK, Mobley DL (2016) Blind prediction of cyclohexane-water distribution coefficients from the SAMPL5 challenge. J Comput Aided Mol Des 30(11):927–944PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Rustenburg AS, Dancer J, Lin B. Feng J, Ortwine DF, Mobley DL, Chodera JD (2016) Measuring experimental cyclohexane–water distribution coefficients for the SAMPL5 challenge. J Comput Aided Mol Des 30(11):945–958PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Scott DR, Munson KB, Marcus EA, Lambrecht NWG, Sachs G (2015) The binding selectivity of vonoprazan (TAK-438) to the gastric H+,K+-ATPase. Aliment Pharmacol Ther 42(11–12):1315–1326PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    JChem for Office 5.12.3.966 (2013) (http://www.chemaxon.com) JChem for Office (Excel) was used for chemical database access, structure based property calculation, search and reporting
  50. 50.
    Weiser J, Shenkin PS, Still WC (1999) Approximate atomic surfaces from linear combinations of pairwise overlaps (LCPO). J Comput Chem 20(2):217–230CrossRefGoogle Scholar
  51. 51.
    Jorgensen WL, McDonald NA, Selmi M, Rablen PR (1995) Importance of polarization for dipolar solutes in low-dielectric media: 1,2-dichloroethane and water in cyclohexane. J Am Chem Soc 117(47):11809–11810CrossRefGoogle Scholar
  52. 52.
    Leontyev I, Stuchebrukhov A (2011) Accounting for electronic polarization in non-polarizable force fields. Phys Chem Chem Phys 13(7):2613–2626PubMedCrossRefGoogle Scholar
  53. 53.
    DeBolt SE, Kollman PA (1995) Investigation of structure, dynamics, and solvation in 1-octanol and its water-saturated solution: molecular dynamics and free-energy perturbation studies. J Am Chem Soc 117(19):5316–5340CrossRefGoogle Scholar
  54. 54.
    MacCallum JL, Tieleman DP (2002) Structures of neat and hydrated 1-octanol from computer simulations. J Am Chem Soc 124(50):15085–15093PubMedCrossRefGoogle Scholar
  55. 55.
    Hyohdoh I, Furuichi N, Aoki T (2013) Fluorine scanning by nonselective fluorination: enhancing Raf/MEK inhibition while keeping physicochemical properties. ACS Med Chem Lett 4(11):1059–1063PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Medicinal Chemistry Research Laboratories, Pharmaceutical Research DivisionTakeda Pharmaceutical Company LimitedFujisawaJapan
  2. 2.Drug Discovery Chemistry Laboratories, Neuroscience Drug Discovery UnitTakeda Pharmaceutical Company LimitedFujisawaJapan
  3. 3.Chemistry, Research DivisionAxcelead Drug Discovery Partners, Inc.FujisawaJapan

Personalised recommendations