Skip to main content
Log in

Individually double minimum-distance definition of protein–RNA binding residues and application to structure-based prediction

  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Abstract

Identifying protein–RNA binding residues is essential for understanding the mechanism of protein–RNA interactions. So far, rigid distance thresholds are commonly used to define protein–RNA binding residues. However, after investigating 182 non-redundant protein–RNA complexes, we find that it would be unsuitable for a certain amount of complexes since the distances between proteins and RNAs vary widely. In this work, a novel definition method was proposed based on a flexible distance cutoff. This method can fully consider the individual differences among complexes by setting a variable tolerance limit of protein–RNA interactions, i.e. the double minimum-distance by which different distance thresholds are achieved for different complexes. In order to validate our method, a comprehensive comparison between our flexible method and traditional rigid methods was implemented in terms of interface structure, amino acid composition, interface area and interaction force, etc. The results indicate that this method is more reasonable because it incorporates the specificity of different complexes by extracting the important residues lost by rigid distance methods and discarding some redundant residues. Finally, to further test our double minimum-distance definition strategy, we developed a classifier to predict those binding sites derived from our new method by using structural features and a random forest machine learning algorithm. The model achieved a satisfactory prediction performance and the accuracy on independent data sets reaches to 85.0%. To the best of our knowledge, it is the first prediction model to define positive and negative samples using a flexible cutoff. So the comparison analysis and modeling results have demonstrated that our method would be a very promising strategy for more precisely defining protein–RNA binding sites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Howard GC, Brown WE (2001) Modern protein chemistry: practical aspects. CRC press, Boca Raton

    Book  Google Scholar 

  2. Hannigan GE, Dedhar S (1997) Protein kinase mediators of integrin signal transduction. J Mol Med (Berl) 75(1):35

    Article  CAS  Google Scholar 

  3. Si J, Cui J, Cheng J, Wu R (2015) Computational prediction of RNA-binding proteins and binding sites. Int J Mol Sci 16(11):26303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Noller HF (2005) RNA structure: reading the ribosome. Science 309(5740):1508

    Article  CAS  PubMed  Google Scholar 

  5. Nachtergaele S, He C (2017) The emerging biology of RNA post-transcriptional modifications. Nat Methods 14(2):156

    Google Scholar 

  6. Khalil AM, Rinn JL (2011) RNA-protein interactions in human health and disease. Semin Cell Dev Biol 22(4):359

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Bellucci M, Agostini F, Masin M, Tartaglia GG (2011) Predicting protein associations with long noncoding RNAs. Nat Methods 8(6):444

    Article  CAS  PubMed  Google Scholar 

  8. Suresh V, Liu L, Adjeroh D, Zhou X (2015) RPI-Pred: predicting ncRNA-protein interaction using sequence and structural information. Nucleic Acids Res 43(3):1370

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Cirillo D, Blanco M, Armaos A, Buness A, Avner P, Guttman M, Cerase A, Tartaglia GG (2016) Quantitative predictions of protein interactions with long noncoding RNAs. Nat Methods 14(1):5

    Article  PubMed  CAS  Google Scholar 

  10. Ponting CP, Oliver PL, Reik W (2009) Evolution and functions of long noncoding RNAs. Cell 136(4):629

    Article  CAS  PubMed  Google Scholar 

  11. Wang Y, Lin Y, Guo YZ, Pu XM, Li ML (2017) Functional dissection of human targets for KSHV-encoded miRNAs using network analysis. Sci Rep (7): 3159

  12. Liu ZY, Guo YZ, Pu XM, Li ML (2016) Dissecting the regulation rules of cancer-related miRNAs based on network analysis. Sci Rep (6): 34172

  13. Cheng CW, Su EC, Hwang JK, Sung TY, Hsu WL (2008) Predicting RNA-binding sites of proteins using support vector machines and evolutionary information. BMC Bioinformatics 9(Suppl 12):S6

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Tong J, Jiang P, Lu ZH (2008) RISP: a web-based server for prediction of RNA-binding sites in proteins. Comput Methods Programs Biomed 90(2):148

    Article  PubMed  Google Scholar 

  15. Murakami Y, Spriggs RV, Nakamura H, Jones S (2010) PiRaNhA: a server for the computational prediction of RNA-binding residues in protein sequences. Nucleic Acids Res 38(Web Server issue):W412

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Wang L, Huang C, Yang MQ, Yang JY (2010) BindN+ for accurate prediction of DNA and RNA-binding residues from protein sequence features. BMC Syst Biol 4(Suppl 1):S3

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Carson MB, Langlois R, Lu H (2010) NAPS: a residue-level nucleic acid-binding prediction server. Nucleic Acids Res 38(Web Server issue):W431

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Ma X, Guo J, Wu J, Liu H, Yu J, Xie J, Sun X (2011) Prediction of RNA-binding residues in proteins from primary sequence using an enriched random forest model with a novel hybrid feature. Proteins 79(4):1230

    Article  CAS  PubMed  Google Scholar 

  19. Fernandez M, Kumagai Y, Standley DM, Sarai A, Mizuguchi K, Ahmad S (2011) Prediction of dinucleotide-specific RNA-binding sites in proteins. BMC Bioinform 12(Suppl 13):S5

    Article  CAS  Google Scholar 

  20. Puton T, Kozlowski L, Tuszynska I, Rother K, Bujnicki JM (2012) Computational methods for prediction of protein-RNA interactions. J Struct Biol 179(3):261

    Article  CAS  PubMed  Google Scholar 

  21. Walia RR, Xue LC, Wilkins K, El-Manzalawy Y, Dobbs D, Honavar V (2014) RNABindRPlus: a predictor that combines machine learning and sequence homology-based methods to improve the reliability of predicted RNA-binding residues in proteins. PLoS ONE 9(5):e97725

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Perez-Cano L, Fernandez-Recio J (2010) Optimal protein-RNA area, OPRA: a propensity-based method to identify RNA-binding sites on proteins. Proteins 78(1):25

    Article  CAS  PubMed  Google Scholar 

  23. Zhao H, Yang Y, Zhou Y (2011) Structure-based prediction of RNA-binding domains and RNA-binding sites and application to structural genomics targets. Nucleic Acids Res 39(8):3017

    Article  CAS  PubMed  Google Scholar 

  24. Towfic F, Caragea C, Gemperline DC, Dobbs D, Honavar V (2010) Struct-NB: predicting protein-RNA binding sites using structural features. Int J Data Min Bioinform 4(1):21

    Article  PubMed  PubMed Central  Google Scholar 

  25. Li S, Yamashita K, Amada KM, Standley DM (2014) Quantifying sequence and structural features of protein-RNA interactions. Nucleic Acids Res 42(15):10086

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Yang XX, Deng ZL, Liu R (2014) RBRDetector: improved prediction of binding residues on RNA-binding protein structures using complementary feature- and template-based strategies. Proteins 82(10):2455

    Article  CAS  PubMed  Google Scholar 

  27. Miao Z, Westhof E (2015) Prediction of nucleic acid binding probability in proteins: a neighboring residue network based score. 43(11):5340

  28. Miao Z, Westhof E (2015) A large-scale assessment of nucleic acids binding site prediction programs. Nucleic Acids Res 11(12):e1004639

    Google Scholar 

  29. Dey S, Pal A, Guharoy M, Sonavane S, Chakrabarti P (2012) Characterization and prediction of the binding site in DNA-binding proteins: improvement of accuracy by combining residue composition, evolutionary conservation and structural parameters. Nucleic Acids Res 40(15):7150

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Pan X, Zhu L, Fan YX, Yan J (2014) Predicting protein-RNA interaction amino acids using random forest based on submodularity subset selection. Comput Biol Chem 53pb:324

    Article  PubMed  CAS  Google Scholar 

  31. Xiong D, Zeng J, Gong H (2015) RBRIdent: an algorithm for improved identification of RNA-binding residues in proteins from primary sequences. Structure 83(6):1068

    CAS  Google Scholar 

  32. Kirsanov DD, Zanegina ON, Aksianov EA, Spirin SA, Karyagina AS, Alexeevski AV (2013) NPIDB: nucleic acid-protein interaction database. Nucleic Acids Res 41(Database issue):D517

    CAS  PubMed  Google Scholar 

  33. Zanegina O, Kirsanov D, Baulin E, Karyagina A, Alexeevski A, Spirin S (2016) An updated version of NPIDB includes new classifications of DNA-protein complexes and their families. Nucleic Acids Res 44(D1):D144

    Article  CAS  PubMed  Google Scholar 

  34. Bahadur RP, Zacharias M, Janin J (2008) Dissecting protein-RNA recognition sites. Nucleic Acids Res 36(8):2705

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Iwakiri J, Tateishi H, Chakraborty A, Patil P, Kenmochi N (2012) Dissecting the protein–RNA interface: the role of protein surface shapes and RNA secondary structures in protein–RNA recognition. Nucleic Acids Res 40(8):3299

    Article  CAS  PubMed  Google Scholar 

  36. Barik A, C N, Pilla SP, Bahadur RP (2015) Molecular architecture of protein-RNA recognition sites. J Biomol Struct Dyn 33(12):2738

    Article  CAS  PubMed  Google Scholar 

  37. Kim OT, Yura K, Go N (2006) Amino acid residue doublet propensity in the protein-RNA interface and its application to RNA interface prediction. Nucleic Acids Res 34(22):6450

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Wang G, Dunbrack RL Jr (2003) PISCES: a protein sequence culling server. Bioinformatics 19(12):1589

    Article  CAS  PubMed  Google Scholar 

  39. Krissinel E, Henrick K (2007) Inference of macromolecular assemblies from crystalline state. J Mol Biol 372(3):774

    Article  CAS  PubMed  Google Scholar 

  40. Kawashima S, Pokarowski P, Pokarowska M, Kolinski A, Katayama T, Kanehisa M (2008) AAindex: amino acid index database, progress report 2008. Nucleic Acids Res 36(Database issue):D202

    CAS  PubMed  Google Scholar 

  41. Sun M, Wang X, Zou C, He Z, Liu W, Li H (2016) Accurate prediction of RNA-binding protein residues with two discriminative structural descriptors. BMC Bioinform 17(1):231

    Article  CAS  Google Scholar 

  42. Heinig M, Frishman D (2004) STRIDE: a web server for secondary structure assignment from known atomic coordinates of proteins. Nucleic Acids Res 32(Web Server issue):W500

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Hubbard SJ, Thornton JM (1998) NACCESS: program for calculating accessibilities. Department of Biochemistry and Molecular Biology, University College of London, UK

    Google Scholar 

  44. Mihel J, Sikic M, Tomic S, Jeren B, Vlahovicek K (2008) PSAIA—protein structure and interaction analyzer. BMC Struct Biol 8:21

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Piovesan D, Minervini G, Tosatto SC (2016) The RING 2.0 web server for high quality residue interaction networks. Nucleic Acids Res 44(W1):W367

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Smoot ME, Ono K, Ruscheinski J, Wang PL, Ideker T (2011) Cytoscape 2.8: new features for data integration and network visualization. Bioinformatics 27(3):431

    Article  CAS  PubMed  Google Scholar 

  47. Baker NA, Sept D, Joseph S, Holst MJ, McCammon JA (2001) Electrostatics of nanosystems: application to microtubules and the ribosome. Proc Natl Acad Sci USA 98(18):10037

    Article  CAS  PubMed  Google Scholar 

  48. Dolinsky TJ, Czodrowski P, Li H, Nielsen JE, Jensen JH, Klebe G, Baker NA (2007) PDB2PQR: expanding and upgrading automated preparation of biomolecular structures for molecular simulations. Nucleic Acids Res 35(Web Server issue):W522

    Article  PubMed  PubMed Central  Google Scholar 

  49. Breiman L (2001) Random forests. Mach Learn 45:5

    Article  Google Scholar 

  50. Luo JS, Guo YZ, Zhong Y, Ma D, Li WL, Li ML (2014) A functional feature analysis on diverse protein–protein interactions: application for the prediction of binding affinity. J Comput Mol Des 28(6):619

    Article  CAS  Google Scholar 

  51. Luo JS, Li WL, Liu ZY, Guo YZ, Pu XM, Li ML (2015) A sequence-based two-level method for the prediction of type I secreted RTX proteins. Analyst 140(9):3048

    Article  CAS  PubMed  Google Scholar 

  52. Wang Y, Guo YZ, Kuang QF, Pu XM, Ji Y, Zhang ZH, Li ML (2015) A comparative study of family-specific protein–ligand complex affinity prediction based on random forest approach. J Comput Mol Des 29(4):349

    Article  CAS  Google Scholar 

  53. Wang Y, Guo YZ, Pu XM, Li ML (2017) Effective prediction of bacterial type IV secreted effectors by combined features of both C-termini and N-termini. J Comput Mol Des 3(11):1

    Google Scholar 

  54. Qiu H, Guo YZ, Yu LZ, Pu XM, Li ML (2018) Predicting protein lysine methylation sites by incorporating single-residue structural features into Chou’s pseudo components. Chemometr Intell Lab Sys 179(1):31

    Article  CAS  Google Scholar 

  55. Liu ZP, Wu LY, Wang Y, Zhang XS, Chen L (2010) Prediction of protein–RNA binding sites by a random forest method with combined features. Bioinformatics 26(13):1616

    Article  CAS  PubMed  Google Scholar 

  56. Jones S, Daley DT, Luscombe NM, Berman HM, Thornton JM (2001) Protein–RNA interactions: a structural analysis. Nucleic Acids Res 29(4):943

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. El-Manzalawy Y, Abbas M, Malluhi Q, Honavar V (2016) Fastrnabindr: fast and accurate prediction of protein-RNA interface residues. Plos ONE 11(7):e0158445

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Allers J, Shamoo Y (2001) Structure-based analysis of protein–RNA interactions using the program ENTANGLE. J Mol Biol 311(1):75

    Article  CAS  PubMed  Google Scholar 

  59. Xie W, Liu X, Huang RH (2003) Chemical trapping and crystal structure of a catalytic tRNA guanine transglycosylase covalent intermediate. Nat Struct Biol 10(10):781

    Article  CAS  PubMed  Google Scholar 

  60. Yamashita S, Martinez A, Tomita K (2015) Measurement of acceptor-TPsiC helix length of tRNA for terminal A76-addition by A-adding enzyme. Nucleic Acids Res 23(5):830

    CAS  Google Scholar 

  61. Tsuchiya Y, Kinoshita K, Nakamura H (2005) PreDs: a server for predicting dsDNA-binding site on protein molecular surfaces. Bioinformatics 21(8):1721

    Article  CAS  PubMed  Google Scholar 

  62. Li T, Li QZ, Liu S, Fan GL, Zuo YC et al (2013) PreDNA: accurate prediction of DNA-binding sites in proteins by integrating sequence and geometric structure information. Bioinformatics 29(6):678

    Article  PubMed  CAS  Google Scholar 

  63. Liu R, Hu J (2013) DNABind: a hybrid algorithm for structure-based prediction of DNA-binding residues by combining machine learning- and template-based approaches. Proteins 81(11):1885

    Article  CAS  PubMed  Google Scholar 

  64. Yan J, Friedrich S, Kurgan L (2015) A comprehensive comparative review of sequence-based predictors of DNA- and RNA-binding residues. Brief Bioinformatics 17(1):88

    Article  PubMed  CAS  Google Scholar 

Download references

Funding

This work was funded by the National Natural Science Foundation of China (Nos. 21675114, 21573151).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanzhi Guo.

Ethics declarations

Conflict of interest

The authors declare no competing financial interests.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 296 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, W., Qin, L., Li, M. et al. Individually double minimum-distance definition of protein–RNA binding residues and application to structure-based prediction. J Comput Aided Mol Des 32, 1363–1373 (2018). https://doi.org/10.1007/s10822-018-0177-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10822-018-0177-z

Keywords

Navigation