Skip to main content
Log in

Role of protein flexibility in the design of Bcl-XL targeting agents: insight from molecular dynamics

  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Abstract

Detailed understanding of protein–ligand interactions is crucial to the design of more effective drugs. This is particularly true when targets are protein interfaces which have flexible, shallow binding sites that exhibit substantial structural rearrangement upon ligand binding. In this study, we use molecular dynamics simulations and free energy calculations to explore the role of ligand-induced conformational changes in modulating the activity of three generations of Bcl-XL inhibitors. We show that the improvement in the binding affinity of each successive ligand design is directly related to a unique and measurable reduction in local flexibility of specific regions of the binding groove, accompanied by the corresponding changes in the secondary structure of the protein. Dynamic analysis of ligand–protein interactions reveals that the latter evolve with each new design consistent with the observed increase in protein stability, and correlate well with the measured binding affinities. Moreover, our free energy calculations predict binding affinities which are in qualitative agreement with experiment, and indicate that hydrogen bonding to Asn100 could play a prominent role in stabilizing the bound conformations of latter generation ligands, which has not been recognized previously. Overall our results suggest that molecular dynamics simulations provide important information on the dynamics of ligand–protein interactions that can be useful in guiding the design of small-molecule inhibitors of protein interfaces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Sharma SK, Ramsey TM, Bair KW (2002) Curr Med Chem. Anti-Cancer Agents 2:311–330. doi:10.2174/1568011023354191

    Article  CAS  Google Scholar 

  2. Arkin MR, Wells JA (2004) Nat Rev Drug Discov 3:301–317. doi:10.1038/nrd1343

    Article  CAS  Google Scholar 

  3. Berg T (2003) Angew Chem Int Ed 42:2462–2481. doi:10.1002/anie.200200558

    Article  CAS  Google Scholar 

  4. Yin H, Hamilton AD (2005) Angew Chem Int Ed 44:4130–4163. doi:10.1002/anie.200461786

    Article  CAS  Google Scholar 

  5. Muchmore SW, Sattler M, Liang H et al (1996) Nature 381:335–341. doi:10.1038/381335a0

    Article  CAS  Google Scholar 

  6. Oltersdorf T, Elmore SW, Shoemaker AR et al (2005) Nature 435:677–681. doi:10.1038/nature03579

    Article  CAS  Google Scholar 

  7. Borner C (2003) Mol Immunol 39:615–647. doi:10.1016/S0161-5890(02)00252-3

    Article  CAS  Google Scholar 

  8. Cory S, Adams JM (2002) Nat Rev Cancer 2:647–656. doi:10.1038/nrc883

    Article  CAS  Google Scholar 

  9. van Delft MF, Huang DC (2006) Cell Res 16:203–213. doi:10.1038/sj.cr.7310028

    Article  Google Scholar 

  10. Coultas L, Strasser A (2003) Semin Cancer Biol 13:115–123. doi:10.1016/S1044-579X(02)00129-3

    Article  CAS  Google Scholar 

  11. Kirkin V, Joos S, Zornig M (2004) BBA-Mol Cell Res 1644:229–249

    CAS  Google Scholar 

  12. Amundson SA, Myers TG, Scudiero D et al (2000) Cancer Res 60:6101–6110

    CAS  Google Scholar 

  13. Green DR, Evan GI (2002) Cancer Cell 1:19–30. doi:10.1016/S1535-6108(02)00024-7

    Article  CAS  Google Scholar 

  14. Wendt MD, Shen W, Kunzer A et al (2006) J Med Chem 49:1165–1181. doi:10.1021/jm050754u

    Article  CAS  Google Scholar 

  15. Bruncko M, Oost TK, Belli BA et al (2007) J Med Chem 50:641–662. doi:10.1021/jm061152t

    Article  CAS  Google Scholar 

  16. Sattler M, Liang H, Nettesheim D et al (1997) Science 275:983–986. doi:10.1126/science.275.5302.983

    Article  CAS  Google Scholar 

  17. Petros AM, Nettesheim DG, Wang Y et al (2000) Protein Sci 9:2528–2534. doi:10.1017/S096183680000331X

    Article  CAS  Google Scholar 

  18. Petros AM, Olejniczak ET, Fesik SW (2004) BBA-Mol Cell Res 1644:83–94

    CAS  Google Scholar 

  19. Shuker SB, Hajduk PJ, Meadows RP et al (1996) Science 274:1531–1534. doi:10.1126/science.274.5292.1531

    Article  CAS  Google Scholar 

  20. Petros AM, Dinges J, Augeri DJ et al (2006) J Med Chem 49:656–663. doi:10.1021/jm0507532

    Article  CAS  Google Scholar 

  21. Park CM, Oie T, Petros AM et al (2006) J Am Chem Soc 128:16206–16212. doi:10.1021/ja0650347

    Article  CAS  Google Scholar 

  22. Zheng CH, Zhou YJ, Zhu J et al (2007) Bioorg Med Chem 15:6407–6417. doi:10.1016/j.bmc.2007.06.052

    Article  CAS  Google Scholar 

  23. Pinto M, Perez JJ, Rubio-Martinez J (2004) J Comput Aided Mol Des 18:13–22. doi:10.1023/B:JCAM.0000022559.72848.1c

    Article  CAS  Google Scholar 

  24. Mancinelli F, Caraglia M, Budillon A et al (2006) J Cell Biochem 99:305–318. doi:10.1002/jcb.20893

    Article  CAS  Google Scholar 

  25. Fu XR, Apgar JR, Keating AE (2007) J Mol Biol 371:1099–1117. doi:10.1016/j.jmb.2007.04.069

    Article  CAS  Google Scholar 

  26. Eyrisch S, Helms V (2007) J Med Chem 50:3457–3464. doi:10.1021/jm070095g

    Article  CAS  Google Scholar 

  27. Manion MK, O’Neill JW, Giedt CD et al (2004) J Biol Chem 279:2159–2165. doi:10.1074/jbc.M306021200

    Article  CAS  Google Scholar 

  28. Berendsen HJC, Vanderspoel D, Vandrunen R (1995) Comput Phys Commun 91:43–56. doi:10.1016/0010-4655(95)00042-E

    Article  CAS  Google Scholar 

  29. Lindahl E, Hess B, van der Spoel D (2001) J Mol Model 7:306–317

    CAS  Google Scholar 

  30. Van der Spoel D, Lindahl E, Hess B et al (2005) J Comput Chem 26:1701–1718. doi:10.1002/jcc.20291

    Article  Google Scholar 

  31. Jorgensen WL, Maxwell DS, TiradoRives J (1996) J. Am. Chem. Soc 118:11225–11236. doi:10.1021/ja9621760

    Article  CAS  Google Scholar 

  32. Kaminski GA, Friesner RA, Tirado-Rives J et al (2001) J Phys Chem B 105:6474–6487. doi:10.1021/jp003919d

    Article  CAS  Google Scholar 

  33. Jorgensen WL, Chandrasekhar J, Madura JD et al (1983) J Chem Phys 79:926–935. doi:10.1063/1.445869

    Article  CAS  Google Scholar 

  34. Essmann U, Perera L, Berkowitz ML et al (1995) J Chem Phys 103:8577–8593. doi:10.1063/1.470117

    Article  CAS  Google Scholar 

  35. Hoover WG (1985) Phys Rev A 31:1695–1697. doi:10.1103/PhysRevA.31.1695

    Article  Google Scholar 

  36. Berendsen HJC, Postma JPM, Vangunsteren WF et al (1984) J Chem Phys 81:3684–3690. doi:10.1063/1.448118

    Article  CAS  Google Scholar 

  37. Ghosh A, Rapp CS, Friesner RA (1998) J Phys Chem B 102:10983–10990. doi:10.1021/jp982533o

    Article  CAS  Google Scholar 

  38. den Otter WK, Briels WJ (1998) J Chem Phys 109:4139–4146. doi:10.1063/1.477019

    Article  Google Scholar 

  39. Ryckaert JP, Ciccotti G, Berendsen HJC (1977) J Comput Phys 23:327–341. doi:10.1016/0021-9991(77)90098-5

    Article  CAS  Google Scholar 

  40. Lugovskoy AA, Degterev AI, Fahmy AF et al (2002) J Am Chem Soc 124:1234–1240. doi:10.1021/ja011239y

    Article  CAS  Google Scholar 

  41. McGaughey GB, Gagne M, Rappe AK (1998) J Biol Chem 273:15458–15463. doi:10.1074/jbc.273.25.15458

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was funded by a grant from Boston College to G.K.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Goran Krilov.

Electronic supplementary material

Below is the link to the electronic supplementary material.

MOESM1 (PDF 78 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Novak, W., Wang, H. & Krilov, G. Role of protein flexibility in the design of Bcl-XL targeting agents: insight from molecular dynamics. J Comput Aided Mol Des 23, 49–61 (2009). https://doi.org/10.1007/s10822-008-9237-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10822-008-9237-0

Keywords

Navigation