Advertisement

Journal of Archaeological Method and Theory

, Volume 26, Issue 4, pp 1591–1631 | Cite as

Single Context, Metacontext, and High Definition Archaeology: Integrating New Standards of Stratigraphic Excavation and Recording

  • Sarah Croix
  • Pieterjan Deckers
  • Claus Feveile
  • Maria Knudsen
  • Sarah Skytte Qvistgaard
  • Søren M. SindbækEmail author
  • Barbora Wouters
Article

Abstract

Recently, new augmented recording techniques have entered archaeological fieldwork. We review a major urban excavation in Ribe, Denmark, which has adopted a systematic use of 3D laser scanning and intensive soil and sediment micromorphological sampling as part of the excavation recording practice. Both methods represent a major advance in field documentation, achieving a higher degree of detail and precision for the recording of archaeological features. We argue that these technologies also challenge the current paradigm of single-context recording, i.e. the separation of layers and features as all-encompassing units of recording. First, 3D digital recording implies that contexts are defined in a more definite way than previously, with less flexibility for recursive revision. Second, micromorphology demonstrates how the strata separated in excavation are only a subset of those created in deposition. We call for a new approach, which takes into consideration the fact that excavation units do not always mirror depositional events, as assumed by single-context theory, and that different kinds of observations may not overlap, as assumed in single-context practice. Instead, interfaces, matrices and assemblages are restored as separate units to record and feed into the interpretation cycle. This may be described as recording metacontext: observations that go across or between contexts. We demonstrate how a systematic metacontext registration can lead to a manageable and more detailed excavation record, more faithful to the archaeologists’ observations.

Keywords

Excavation methods Single-context recording Micromorphology 3D laser scanning Viking-Age Scandinavia Ribe 

Notes

Acknowledgments

This work constitutes part of the Northern Emporium Excavation project, supported by a Carlsberg Foundation Semper Ardens research grant and by the Danish National Research Foundation under the grant DNRF119 – Centre of Excellence for Urban Network Evolutions (UrbNet). We wish to thank the Museum of Southwest Jutland and staff for great collaboration, and Michael Blömer, Federica Sulas, Kirstine Haase and Johan Sandvang Larsen for valuable input to discussions. Barbora Wouters thanks Kristin Ismail-Meyer, IPNA, University of Basel and Yannick Devos, Université Libre de Bruxelles and Vrije Universiteit Brussel for discussion of geoarchaeological interpretation.

Supplementary material

10816_2019_9417_MOESM1_ESM.docx (5.5 mb)
ESM 1 (DOCX 5658 kb)

References

  1. Adams, M. (1992). Stratigraphy after Harris: some questions. In K. Steane (Ed.), Interpretation of stratigraphy: a review of the art (pp. 13–16). Lincoln: City of Lincoln Archaeological Unit.Google Scholar
  2. Aldeias, V., Dibble, H. L., Sandgathe, D., Goldberg, P., & McPherron, S. J. P. (2016). How heat alters underlying deposits and implications for archaeological fire features: a controlled experiment. Journal of Archaeological Science, 67, 64–79.Google Scholar
  3. Arroyo-Kalin, M. (2017). Amazonian dark earths. In C. Nicosia & G. Stoops (Eds.), Archaeological soil and sediment micromorphology (pp. 345–358). Oxford: Wiley Blackwell.Google Scholar
  4. Ashby, S. P., Coutu, A. N., & Sindbæk, S. M. (2015). Urban networks and Arctic outlands: craft specialists and reindeer antler in Viking towns. European Journal of Archaeology, 18(4), 679–704.Google Scholar
  5. Banerjea, R. Y., Bell, M., Matthews, W., & Brown, A. (2015). Applications of micromorphology to understanding activity areas and site formation processes in experimental hut floors. Archaeological and Anthropological Science, 7(1), 89–112.Google Scholar
  6. Barker, P. (1977). Techniques of archaeological excavation. London: Batsford.Google Scholar
  7. Barker, P. (1993). Techniques of archaeological excavation (3rd ed.). London: Batsford.Google Scholar
  8. Bencard, M., & Jørgensen, L. B. (1990). Excavation and stratigraphy. In M. Bencard, L. B. Jørgensen, & H. B. Madsen (Eds.), Ribe excavations 1970–1976, 4 (pp. 15–163). Esbjerg: Sydjysk Universitetsforlag.Google Scholar
  9. Benyarku, C. A. & Stoops, G. (2005). Guidelines for preparation of rock and soil thin sections and polished sections. Quaderns DMACS, 33. Lleida: Department de Medi Ambient I Ciències del Sòl, Universitat de Lleida.Google Scholar
  10. Berggren, Å., & Hodder, I. (2003). Social practice, method, and some problems of field archaeology. American Antiquity, 68(03), 421–434.Google Scholar
  11. Berggren, Å., Dell’Unto, N., Forte, M., Haddow, S., Hodder, I., Issavi, J., Lercari, N., Mazzucato, C., Mickel, A., & Taylor, J. (2015). Revisiting reflexive archaeology at Çatalhöyük: integrating digital and 3D technologies at the trowel’s edge. Antiquity, 89(344), 433–448.  https://doi.org/10.15184/aqy.2014.43.CrossRefGoogle Scholar
  12. Borderie, Q., Devos, Y., Nicosia, C., Cammas, C., & Macphail, R. (2015). Les terres noires dans l’approche géoarchéologique des contextes urbains. In N. Carcaud & G. Arnaud-Fassetta (Eds.), La Géoarchéologie Française Au XXIe Siècle (pp. 247–258). Paris: CNRS éditions.Google Scholar
  13. Borderie, Q., Ball, T., Banerjea, R., Bizri, M., Lejault, C., Save, S., & Vaughan-Williams, A. (2019). Early Middle Ages houses of Gien (France) from the inside: geoarchaeology and archaeobotany of 9th–11th c. floors. Environmental Archaeology.  https://doi.org/10.1080/14614103.2018.1534716.
  14. Bowsher, D., Holder, N., Howell, I., & Dyson, T. (2007). The London Guildhall: the archaeology and history of the Guildhall Precinct from the Medieval period to the 20th century. London: Museum of London Archaeological Service.Google Scholar
  15. Burch, M., Treveil, P., & Keene, D. (2011). The development of early medieval and later poultry and cheapside: excavations at 1 poultry and vicinity, City of London. London: Museum of London Archaeology.Google Scholar
  16. Canti, M. (2001). What is geoarchaeology? Re-examining the relationship between archaeology and earth science. In U. Albarella (Ed.), Environmental archaeology: meaning and purpose (pp. 103–112). Dordrecht: Kluwer.Google Scholar
  17. Carver, M. (2005). Key ideas in excavation. In C. Renfrew & P. Bahn (Eds.), Archaeology: the key concepts (pp. 79–82). London: Routledge.Google Scholar
  18. Carver, M. (2009). Archaeological investigation. London: Routledge.Google Scholar
  19. Carver, G. (2012). How to archaeologize with a hammer. In H. Cobb, O. J. T. Harris, C. Jones, & P. Richardson (Eds.), Reconsidering archaeological fieldwork: exploring on-site relationships between theory and practice (pp. 15–29). New York: Springer.Google Scholar
  20. Carver, M. O. H. (2016). Making archaeology happen: design versus dogma. London: Routledge.Google Scholar
  21. Carver, M., Gaydarska, B., & Monton-Subias, S. (Eds.). (2015). Field archaeology from around the world: ideas and approaches. Cham & Heidelberg: Springer.Google Scholar
  22. Chadwick, A. (1998). Archaeology at the edge of chaos: further towards reflexive excavation methodologies. Assemblage, 3, 97–117.Google Scholar
  23. Clark, P. (1992). Contrasts in the recording and interpretation of ‘urban’ and ‘rural’ stratification. In K. Steane (Ed.), Interpretation of stratigraphy: a review of the art (pp. 17–19). Lincoln: City of Lincoln Archaeological Unit.Google Scholar
  24. Courty, M.-A., Goldberg, P., & Macphail, R. I. (1989). Soils and micromorphology in archaeology. Cambridge: Cambridge University Press.Google Scholar
  25. Crabtree, P. J., Reilly, E., Wouters, B., Devos, Y., Bellens, T., & Schryvers, A. (2017). Environmental evidence from early urban Antwerp: new data from archaeology, micromorphology, macrofauna and insect remains. Quaternary International, 460, 108–123.Google Scholar
  26. Croix, S. (2015). Permanency in early medieval emporia: reassessing Ribe. European Journal of Archaeology, 18(3), 497–523.Google Scholar
  27. de Roo, B., Stal, C., Lonneville, B., De Wulf, A., Bourgeois, J., & De Maeyer, P. (2016). Spatiotemporal data as the foundation of an archaeological stratigraphy extraction and management system. Journal of Cultural Heritage, 19, 522–530.Google Scholar
  28. Devos, Y., Vrydaghs, L., Degraeve, A., & Fechner, K. (2009). An archaeopedological and phytolitarian study of the “dark earth” on the site of Rue de Dinant (Brussels, Belgium). Catena, 78(3), 270–284.Google Scholar
  29. Devos, Y., Wouters, B., Vrydaghs, L., Tys, D., Bellens, T., & Schryvers, A. (2013). A soil micromorphological study on the origins of the early medieval trading centre of Antwerp (Belgium). Quaternary International, 315, 167–183.Google Scholar
  30. Doneus, M., & Neubauer, W. (2005). Laser scanners for 3D documentation of stratigraphic excavations. In E. P. Baltsavias, A. Gruen, L. Van Gool, & M. Pateraki (Eds.), Recording, modeling and visualization of cultural heritage (pp. 193–203). London: Taylor & Francis.Google Scholar
  31. Drewett, P. (1999). Field archaeology: an introduction. London: UCL Press.Google Scholar
  32. FAO. (2006). Guidelines for soil profile description (4th ed.). Rome: Food and Agriculture Organization of the United Nations.Google Scholar
  33. Fedele, F. G. (1984). Towards an analytical stratigraphy: stratigraphy reasoning and excavation. Stratigraphica Archaeologica, 1, 7–15.Google Scholar
  34. Feveile, C. (2006a). Ribe on the north side of the river, 8th–12th century. In C. Feveile (Ed.), Ribe studier: Det ældste Ribe. Udgravninger på nordsiden af Ribe Å 1984–2000, 1.1 (pp. 65–92). Jysk Arkæologisk Selskab: Aarhus.Google Scholar
  35. Feveile, C. (Ed.). (2006b). Ribe studier: Det ældste Ribe. Udgravninger på nordsiden af Ribe Å 1984–2000, 1.1–1.2. Højbjerg: Jysk Arkæologisk Selskab.Google Scholar
  36. Feveile, C. (2012). Ribe: emporia and town in 8th–9th century. In S. Gelichi & R. Hodges (Eds.), From one sea to another: Trading places in the European and mediterranean early middle ages (pp. 111–122). Turnhout: Brepols.Google Scholar
  37. Feveile, C., & Jensen, S. (2000). Ribe in the 8th and 9th century: a contribution to the archaeological chronology of north western Europe. Acta Archaeologica, 71(1), 9–24.Google Scholar
  38. Feveile, C., & Jensen, S. (2006). ASR 9 Posthuset. In C. Feveile (Ed.), Ribe studier: Det ældste Ribe. Udgravninger på nordsiden af Ribe Å 1984–2000, 1.2 (pp. 119–189). Jysk Arkæologisk Selskab: Højbjerg.Google Scholar
  39. Frandsen, L. B., & Jensen, S. (2006). ASR 7 Sct. Nicolajgade 8. In C. Feveile (Ed.), Ribe studier: Det ældste Ribe. Udgravninger på nordsiden af Ribe Å 1984–2000, 1.2 (pp. 9–64). Jysk Arkæologisk Selskab: Højbjerg.Google Scholar
  40. French, C. (2015). A handbook of geoarchaeological approaches for investigating landscapes and settlement sites: studying scientific archaeology. Oxford: Oxbow Books.Google Scholar
  41. Friesem, D. E., Wattez, J., & Onfray, M. (2017). Earth construction materials. In C. Nicosia & G. Stoops (Eds.), Archaeological soil and sediment micromorphology (pp. 99–110). Oxford: Wiley Blackwell.Google Scholar
  42. Galeazzi, F. (2016). Towards the definition of best 3D practices in archaeology: assessing 3D documentation techniques for intra-site data recording. Journal of Cultural Heritage, 17, 159–169.  https://doi.org/10.1016/j.culher.2015.07.005.CrossRefGoogle Scholar
  43. Gasche, H., & Tunca, O. (1983). Guide to archaeostratigraphic classification and terminology: definitions and principles. Journal of Field Archaeology, 10, 325–335.Google Scholar
  44. Gé, T., Courty, M.-A., Matthews, W., & Wattez, J. (1993). Sedimentary formation processes of occupation surfaces. In P. Goldberg, D. T. Nash, & M. D. Petraglia (Eds.), Formation processes in archaeological context (pp. 149–163). Madison: Prehistory Press.Google Scholar
  45. GEUS (2018). Danish quaternary geological map. Geological Survey of Denmark and Greenland (online), https://eng.geus.dk/products-services-facilities/data-and-maps/maps-of-denmark/. Accessed 19 March 2019.
  46. Goldberg, P., & Berna, F. (2010). Micromorphology and context. Quaternary International, 214(1-2), 56–62.Google Scholar
  47. Goldberg, P., & Macphail, R. I. (2003). Strategies and techniques in collecting micromorphology samples. Geoarchaeology, 18(5), 571–578.Google Scholar
  48. Harris, E. C. (1989). Principles of archaeological stratigraphy, 2nd edn. London: Academic Press.Google Scholar
  49. Heimdahl, J. (2005). Urbanised nature in the past: Site formation and environmental development in two Swedish towns, AD 1200–1800. Stockholm: Stockholm University.Google Scholar
  50. Hodder, I. (1992). Theory and practice in archaeology. London: Routledge.Google Scholar
  51. Hodder, I. (1997). ‘Always momentary, fluid and flexible’: towards a reflexive excavation methodology. Antiquity, 71(273), 691–700.Google Scholar
  52. Huisman, H., & Milek, K. (2017). Turf as construction material. In C. Nicosia & G. Stoops (Eds.), Archaeological soil and sediment micromorphology (pp. 113–120). Oxford: Wiley Blackwell.Google Scholar
  53. Hummler, M. (2015). Recording fieldwork. In M. Carver, B. Gaydarska, & S. Monton-Subias (Eds.), Field archaeology from around the world (pp. 63–69). Cham: Springer.Google Scholar
  54. Jupiter (2018). National boringsdatabase. Geological Survey of Denmark and Greenland (online), https://www.geus.dk/produkter-ydelser-og-faciliteter/data-og-kort/national-boringsdatabase-jupiter/. Accessed 19 March 2019.
  55. Karkanas, P., & Goldberg, P. (2018). Phosphatic features. In G. Stoops, V. Marcelino, & F. Mees (Eds.), Interpretation of micromorphological features of soils and regoliths (2nd ed., pp. 323–346). Amsterdam: Elsevier.Google Scholar
  56. Kimball, J. J. L. (2016). 3D delineation: a modernisation of drawing methodology for field archaeology. Oxford: Archaeopress.Google Scholar
  57. Kooistra, M. J., & Pulleman, M. M. (2018). Features related to faunal activity. In G. Stoops, V. Marcelino, & F. Mees (Eds.), Interpretation of micromorphological features of soils and regoliths, 2nd edn. (pp. 447–470). Amsterdam: Elsevier.Google Scholar
  58. Kräling, H. (2014). Digitale Dokumentation: Die Weiterentwicklung der Lübecker Archäologie. In A. Falk, U. Müller, & M. Schneider (Eds.), Lübeck und der Hanseraum: Beiträge zu Archäologie und Kulturgeschichte. Festschrift für Manfred Gläser (pp. 131–134). Schmidt-Römhild: Lübeck.Google Scholar
  59. Kristiansen, K. (2014). Towards a new paradigm: the third science revolution and its possible consequences in archaeology. Current Swedish Archaeology, 22(4), 11–34.Google Scholar
  60. Krupski, M., Kabala, C., Sady, A., Gliński, R., & Wojcieszak, J. (2017). Double-and triple-depth digging and anthrosol formation in a medieval and modern-era city (Wrocław, SW Poland).Geoarchaeological research on past horticultural practices. CATENA, 153, 9–20.Google Scholar
  61. Langohr, R. (1994). Directives and rationale for adequate and comprehensive field soil data bases. New Waves in Soil Science, 5, 176–191.Google Scholar
  62. Larsson, S. (2001). Stadens dolda kulturskikt: Lundaarkeologins förutsättningar och förståelsehorisonter uttryckt genom praxis för källmaterialsproduktion. Lund: Kulturhistoriska museet.Google Scholar
  63. Larsson, S. (2009). Theoretical and methodological directions in urban archaeology: the case of Lund, Sweden. In N. Engberg, A. N. Jørgensen, J. Kieffer-Olsen, P. K. Madsen, & C. Radtke (Eds.), Archaeology of medieval towns in the Baltic and North Sea area: 167–80 (pp. 167–180). Copenhagen: The National Museum.Google Scholar
  64. Lucas, G. (2001). Critical approaches to fieldwork: contemporary and historical archaeological practice. London: Routledge.Google Scholar
  65. Macphail, R. I. (2010). Dark earth and insights into changing land use of urban areas. In G. Speed & D. Sami (Eds.), Debating urbanism: within and beyond the walls c. AD 300 to c. AD 700 (pp. 145–165). Leicester Archaeology: Leicester.Google Scholar
  66. Macphail, R. I., Galinié, H., & Verhaeghe, F. (2003). A future for dark earth? Antiquity, 77(296), 349–358.Google Scholar
  67. Mallol, C., & Mentzer, S. M. (2017). Contacts under the lens: perspectives on the role of microstratigraphy in archaeological research. Archaeoligical and Anthropological Sciences, 9(8), 1645–1669.Google Scholar
  68. Mallol, C., Mentzer, S. M., & Miller, C. E. (2017). Combustion features. In C. Nicosia & G. Stoops (Eds.), Archaeological soil and sediment micromorphology (pp. 299–330). Oxford: Wiley Blackwell.Google Scholar
  69. Matthews, W., French, C. A. I., Lawrence, T., Cutler, D. F., & Jones, M. K. (1997). Microstratigraphic traces of site formation processes and human activities. World Archaeology, 29(2), 281–308.Google Scholar
  70. Milek, K. B. (2012). Floor formation processes and the interpretation of site activity areas: an ethnoarchaeological study of turf buildings at Thverá, Northeast Iceland. Journal of Anthropological Archaeology, 31(2), 119–137.Google Scholar
  71. Milek, K. B., & French, C. A. I. (2007). Soils and sediments in the settlement and harbour at Kaupang. In D. Skre (Ed.), Kaupang in Skiringssal, Kaupang excavation project publication series (pp. 321–360). Aarhus: Aarhus University Press.Google Scholar
  72. Nicosia, C., & Stoops, G. (Eds.). (2017). Archaeological soil and sediment micromorphology. Oxford: Wiley Blackwell.Google Scholar
  73. Nicosia, C., Devos, Y., & Borderie, Q. (2013). The contribution of geosciences to the study of European dark earths: a review. Post-classical archaeology, 3, 145–170.Google Scholar
  74. Opitz, R. (2015). Three dimensional field recording in archaeology: an example from Gabii. In B. R. Olsen & W. R. Caraher (Eds.), Visions of substance: 3D imaging in Mediterranean archaeology (pp. 73–87). Grand Forks, ND: The Digital Press @ University of North Dakota Digital Press.Google Scholar
  75. Pavel, C. (2012). Archaeological recording: form and content, theory and practice. Atek Na, 2, 33–74.Google Scholar
  76. Pilø, L. (2007). The fieldwork 1998-2003: overview and methods. In D. Skre (Ed.), Kaupang in Skiringssal (pp. 143–160). Aarhus: Aarhus University Press.Google Scholar
  77. Py, M. (Ed.) (1997). SYSLAT 3.1. Système d’information archéologique: Manuel de référence. (Lattara 10). Lattes: Association pour la recherche archéologique en Languedoc orientalGoogle Scholar
  78. Raja, R., & Sindbæk, S. M. (2018). Urban network evolutions: exploring dynamics and flows through evidence from urban contexts. In R. Raja & S. M. Sindbæk (Eds.), Urban network evolutions: towards a high-definition archaeology (pp. 13–18). Aarhus: Aarhus University Press.Google Scholar
  79. Rentzel, P., Nicosia, C., Gebhardt, A., Brönniman, D., Pümpin, C., & Ismail-Meyer, K. (2017). Trampling, poaching and the effect of traffic. In C. Nicosia & G. Stoops (Eds.), Archaeological soil and sediment micromorphology (pp. 281–298). Oxford: Wiley Blackwell.Google Scholar
  80. Röpke, A., & Dietl, C. (2017). Burnt soils and sediments. In C. Nicosia & G. Stoops (Eds.), Archaeological soil and sediment micromorphology (pp. 173–180). Oxford: Wiley Blackwell.Google Scholar
  81. Roskams, S. (2001). Excavation. Cambridge manuals in archaeology. Cambridge: Cambridge University Press.Google Scholar
  82. Saunders, T. (2000). Excavation and post-excavation methods and practices. In S. W. Nordeide (Ed.), Utgravningene i erkebispegården i Trondheim. Excavations in the Archbishop's Palace: Methods, chronlogy and site development (NIKU temahefte) (Vol. 12, pp. 19–38). Trondheim: NIKU.Google Scholar
  83. Schiffer, M. B. (1987). Formation processes of the archaeological record. Albuquerque, N.M.: 10.1007/s10816-019-09417-x University of New Mexico Press.Google Scholar
  84. Sindbæk, S. M. (2017). Urbanism and exchange in the North Atlantic/Baltic, 600–1000 CE. In T. Hodos (Ed.), The Routledge handbook of archaeology and globalization (pp. 553–565). New York: Routledge.Google Scholar
  85. Sindbæk, S. M. (2018). Northern Emporium: the archaeology of urban networks in Viking-Age Ribe. In R. Raja & S. Sindbæk (Eds.), Urban network evolutions: towards a high-definition archaeology (pp. 161–166). Aarhus: Aarhus University Press.Google Scholar
  86. Sode, T., Feveile, C., & Schnell, U. (2010). An investigation on segmented, metal-foiled glass beads and blown, mirrored glass beads from Ribe, Denmark. In J. Callmer, C. Theune, F. Biermann, R. Struwe, & G. H. Jeute (Eds.), Zwischen Fjorden und Steppe: Festschrift für Johan Callmer zum 65. Geburtstag (pp. 319–328). Verlag Marie Leidorf: Rahden/Westf.Google Scholar
  87. Stoops, G. (2003). Guidelines for analysis and description of soil and regolith thin section. Madison: Soil Science Society of America.Google Scholar
  88. Tassie, G. J. (2015). Single-context recording in the context of archaeological fieldwork in Egypt: part one. In F. A. Hassan, G. J. Tassie, L. S. Owens, A. De Trafford, J. van Wetering, & O. El Daly (Eds.), The management of Egypt’s cultural heritage, 2 (pp. 175–184). London: ECHO and Golden House Publications.Google Scholar
  89. Turney, C., Canti, M., Branch, N., & Clark, P. (2005). Environmental archaeology: theoretical and practical approaches. London: Routledge.Google Scholar
  90. Valente, R., Brumana, R., Oreni, D., Banfi, F., Barazzetti, L. & Previtali, M. (2017). Object-oriented approach for 3D archaeological documentation. The international archives of the photogrammetry, remote sensing and spatial information sciences, XLII-2/W5, 707–712.Google Scholar
  91. van Riel, S. (2016). Exploring the use of 3D GIS as an analytical tool in archaeological excavation practice. Unpublished thesis, Lund University.Google Scholar
  92. Vepraskas, M. J., Lindbo, D. L., & Stolt, M. H. (2018). Redoximorphic features. In G. Stoops, V. Marcelino, & F. Mees (Eds.), Interpretation of micromorphological features of soils and regoliths (2nd ed., pp. 425–446). Amsterdam: Elsevier.Google Scholar
  93. Verleyen, E., Sabbe, K., Vyverman, W., & Nicosia, C. (2017). Siliceous microfossils from single-celled organisms: Diatoms and chrysophycean stomatocysts. In C. Nicosia & G. Stoops (Eds.), Archaeological soil and sediment micromorphology (pp. 165–170). Oxford: Wiley Blackwell.Google Scholar
  94. Vince, A. (1995). Approaches to residuality in urban archaeology. Interpreting Stratigraphy, 5, 9–14.Google Scholar
  95. von Carnap, C., Hilberg, V., & Schultze, J. (2014). Research in Hedeby: obligations and responsibilities. In C. von Carnap (Ed.), Quo vadis? Status and future perspectives of long-term excavations in Europe (pp. 225–248). Hamburg: Wachholtz Murmann Publishers.Google Scholar
  96. Weiner, S. (2010). Microarchaeology. Cambridge: Cambridge University Press.Google Scholar
  97. Westman, A. (ed.), (1994). Archaeological site manual. London: Museum of London.Google Scholar
  98. Wouters, B. (2016). Geoarchaeological and micromorphological approaches to the formation and biographies of Early Medieval towns in Northwest Europe. Unpublished doctoral thesis, Vrije Universiteit Brussel/University of Aberdeen.Google Scholar
  99. Wouters, B. (2018). Geoarchaeology and micromorphology at Ribe: a northern emporium in high definition. In R. Raja & S. M. Sindbæk (Eds.), Urban network evolutions: towards a high-definition archaeology (pp. 175–182). Aarhus: Aarhus University Press.Google Scholar
  100. Wouters, B. (2019). A biographical approach to urban communities from a geoarchaeological perspective: high-definition applications and case studies. In R. Raja & S. M. Sindbæk (Eds.), Biographies of place. Oxford: Oxford University Press.Google Scholar
  101. Wouters, B., Milek, K., Devos, Y., & Tys, D. (2016). Soil micromorphology in urban research: Early medieval Antwerp (Belgium) and Viking age Kaupang (Norway). In B. Jervis, L. G. Broderick, & I. Grau-Sologestoa (Eds.), Objects, environment, and everyday life in medieval Europe. Studies in the history of daily life (800–1600) (pp. 279–298). Brepols: Turnhout.Google Scholar
  102. Wouters, B., Devos, Y., Milek, K., Vrydaghs, L., Bartholomieux, B., Tys, D., Moolhuizen, C., & van Asch, N. (2017). Medieval markets: a soil micromorphological and archaeobotanical study of the urban stratigraphy of Lier (Belgium). Quaternary International, 460, 48–64.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Aarhus UniversityAarhusDenmark
  2. 2.Museums of Southwest JutlandEsbjergDenmark

Personalised recommendations