Advertisement

An Experimental Approach to Degrees of Rounding Among Lithic Artifacts

  • Guillermo Bustos-PérezEmail author
  • Sara Díaz
  • Javier Baena
Article
  • 95 Downloads

Abstract

Many Paleolithic lithic collections are found in contexts where post-depositional alterations, such as those made by water streams or sedimentary displacement, have affected the surface of most of the lithic artifacts. A major alteration often observed is the rounding of lithic artifacts. Although there have been some proposals on how to classify degrees of rounding—usually by employing naked eye classifications to determine degrees of rounding—there is a lack of consensus among lithic analysts. The aim of this study is to define and characterize degrees of rounding among lithic artifacts. This characterization also takes into consideration the differential development of alterations and rounding stages, depending on the raw materials. Here, an experimental program has been developed along with supplementary archaeological analysis to define and characterize degrees of rounding. Degrees of rounding are characterized according to three criteria: surface alteration, edge alteration, and width of the ridges. A preliminary characterization and proposal of degrees of rounding is presented. This characterization also takes into consideration the raw materials and the sensibility and resolution of the criteria to establish degrees of rounding. Results show how, after microscopic analysis, lithic artifacts that appear fresh to the naked present different degrees of rounding. The conclusions explain that, although rounding is continuous process, it is possible to establish degrees of rounding, a main initial goal for any lithic analyst.

Keywords

Experimental archaeology Rounding Post-depositional damage Lithic analysis 

Notes

Acknowledgments

The authors wish to thank the co-editor and the three anonymous reviewers for their invaluable comments and suggestions. This article is the result of the research project HAR2016-76760-C3-2-P “¿COMO, QUIEN Y DONDE?: VARIABILIDAD DE COMPORTAMIENTOS EN LA CAPTACION Y TRANSFORMACION DE LOS RECURSOS LITICOS DENTRO DE GRUPOS NEANDERTALES 2” financed by Agencia Estatal de Investigación (AEI) and Fondo Europeo de Desarrollo Regional (FEDER). The development of the experiment and analysis and of the materials were undertaken at the Laboratory of Experimental Archaeology (UAM). We are thankful to Concepción Torres for her advice and suggestions. The authors would also like to thank Scribendi Company for the grammatical revision of the English manuscript.

References

  1. Akoshima, K. (1988). Microflaking quantification. In G. Sieveking & M. Newcomer (Eds.), The human uses of flint and chert: proceedings of the fourth international flint symposium, held at Brighton Polytechnic (pp. 71–79). New York: Cambridge University Press.Google Scholar
  2. Benito-Calvo, A., Martínez-Moreno, J., Jordá Pardo, J. F., de la Torre, I., & Mora, R. (2009). Sedimentological and archaeological fabrics in Palaeolithic levels of the south-eastern Pyrenees: Cova Gran and Roca dels Bous sites (Lleida, Spain). Journal of Archaeological Science, 36(11), 2566–2577.CrossRefGoogle Scholar
  3. Borrazzo, K. B. (2006). Tafonomía lítica en dunas: una propuesta para el análisis de los artefactos líticos. Intersecciones en Antropología, 7, 247–261.Google Scholar
  4. Burroni, D., Donahue, R. E., & Pollard, A. M. (2002). The surface alteration features of flint artefacts as a record of environmental processes. Journal of Archaeological Science, 29(11), 1277–1287.  https://doi.org/10.1006/jasc.2001.0771.CrossRefGoogle Scholar
  5. Bustillo, M. Á., Pérez-Jiménez, J. L., & Bustillo, M. (2012). Caracterización geoquímica de rocas sedimentarias formadas por silicificación como fuentes de suministro de utensilios líticos (Mioceno, cuenca de Madrid). Revista Mexicana de Ciencias Geológicas, 29(1), 233–247.Google Scholar
  6. Bustos-Pérez, G., & Baena Preysler, J. (2016). Preliminary experimental insights into differential heat impact among lithic artifacts. Journal of Lithic Studies, 3(2), 18.  https://doi.org/10.2218/jls.v3i2.1396. CrossRefGoogle Scholar
  7. Caro Gómez, J. A. (2000). Evolución de las industrias Achelenses en las terrazas fluviales del Bajo Guadalquivir (780.000 - 40.000 BP): episodios geomorfológicos y secuencia Pelolítica. Spal, 9, 189–207.CrossRefGoogle Scholar
  8. Chambers, J. C. (2003). Like a rolling stone? The identification of fluvial transportation damage signatures on secondary context bifaces. Lithics, 24, 66–77.Google Scholar
  9. Chu, W., Thompson, C., & Hosfield, R. (2015). Micro-abrasion of flint artifacts by mobile sediments: a taphonomic approach. Archaeological and Anthropological Sciences, 7(1), 3–11.  https://doi.org/10.1007/s12520-013-0157-0.CrossRefGoogle Scholar
  10. Cziesla, E., Eickhoff, S., Arts, N., Winter, D., & Fabian, P. (Eds.). (1990). The big puzzle: international symposium on refitting stone artefacts, Monrepos, 1987 (Vol. 1, Studies in Modern Archaeology). Bonn: Holos.Google Scholar
  11. Eren, M. I., Boehm, A. R., Morgan, B. M., Anderson, R., & Andrews, B. (2011). Flaked stone taphonomy: a controlled experimental study of the effects of sediment consolidation on flake edge morphology. Journal of Taphonomy, 9(3), 201–217.Google Scholar
  12. Glauberman, P. J., & Thorson, R. M. (2012). Flint Patina as an aspect of “flaked stone taphonomy”: a case study from the loess terrain of the Netherlands and Belgium. Journal of Taphonomy, 10(1), 21–43.Google Scholar
  13. González-Urquijo, J. E., & Ibáñez-Estévez, J. J. (2003). The quantification of use-wear polish using image analysis. First results. Journal of Archaeological Science, 30(4), 481–489.  https://doi.org/10.1006/jasc.2002.0855.
  14. Goren-Inbar, N., Alperson-Afil, N., Sharon, G., & Herzlinger, G. (2018). The Acheulian site of Gesher Benot Ya ‘aqov. Volume IV: the lithic assemblages (Vol. IV, Vertebrate paleobiology and paleoanthropology series). Springer.Google Scholar
  15. Grace, R., Graham, I. D., & Newcomer, M. H. (1988). Preliminary investigation into the quantification of wear traces on flint tools. In G. Sieveking & M. Newcomer (Eds.), The human uses of flint and chert: proceedings of the fourth international flint symposium, held at Brighton Polytechnic (pp. 63–69). New York: Cambridge University Press.Google Scholar
  16. Grosman, L., Sharon, G., Goldman-Newman, T., Smikt, O., & Smilansky, U. (2011). Studying post depositional damage on Acheulian bifaces using 3-D scanning. Journal of Human Evolution, 60(4), 398–406.  https://doi.org/10.1016/j.jhevol.2010.02.004.CrossRefGoogle Scholar
  17. Harding, P., Gibbard, P. L., Lewin, J., Macklin, M. G., & Moss, E. H. (1987). The transport and abrasion of flint handaxes in a gravel-bed river. In G. Sieveking & M. Newcomer (Eds.), The human uses of flint and chert: proceedings of the fourth international flint symposium held at Brighton Polytechnic (pp. 115–126). Cambridge: Cambridge University Press.Google Scholar
  18. Hiscock, P. (1985). The need for a taphonomic perspective in stone artefact analysis. Queensland Archaeological Research, 2, 82–95.Google Scholar
  19. Hiscock, P. (2002). Quantifying the size of artefact assemblages. Journal of Archaeological Science, 29(3), 251–258.  https://doi.org/10.1006/jasc.2001.0705.CrossRefGoogle Scholar
  20. Hosfield, R. T. (2011). Rolling stones: understanding river-rolled Paleolithic artifact assemblages. In A. Brown, L. Basell, & K. Butzer (Eds.), Geoarchaeology, climate change, and sustainability (Vol. 476, pp. 37–52, The Geological Society of America Special Paper, Vol. 476).Google Scholar
  21. Hosfield, R. T., & Chambers, J. C. (2003). Flake modifications during fluvial transportation: three cautionary tales. Lithics, 24, 57–65.Google Scholar
  22. Hosfield, R. T., Chambers, J. C., Macklin, M. G., Brewer, P., & Sear, D. (2000). Interpreting secondary context ‘sites’: a role for experimental archaeology. Lithics, 21, 29–35.Google Scholar
  23. Lenoble, A., & Bertran, P. (2004). Fabric of Palaeolithic levels: methods and implications for site formation processes. Journal of Archaeological Science, 31(4), 457–469.CrossRefGoogle Scholar
  24. McBrearty, S., Bishop, L., Plummer, T., Dewar, R., & Conard, N. (1998). Human trampling as an agent of lithic artifact edge modification. American Antiquity, 63(1), 108–129.CrossRefGoogle Scholar
  25. Mercierca, A. (2000). Burnt and broken: an experimental study of heat fracturing in silcrete. Australian Archaeology, 51(1), 40–47.CrossRefGoogle Scholar
  26. Panera Gallego, J., & Rubio Jara, S. (1996). Propuesta de análisis tecnomorfológico para la industria lítica del Pleistoceno Medio. Espacio, tiempo y forma. Serie I, Prehistoria y Arqueología, 9, 33–76.Google Scholar
  27. Petraglia, M. D., & Potts, R. (1994). Water flow and the formation of Early Pleistocene artifact sites in Olduvai Gorge, Tanzania. Journal of Anthropological Archaeology, 13(3), 228–254.  https://doi.org/10.1006/jaar.1994.1014.CrossRefGoogle Scholar
  28. Prost, D.-C. (1993). Nouveaux termes pour une description microscopique des retouches et autres enlèvements. Bulletin de la Société Préhistorique Française, 90(3), 190–195.  https://doi.org/10.3406/bspf.1993.9618.CrossRefGoogle Scholar
  29. Rottländer, R. (1975). The formation of patina on flint. Archaeometry, 17(1), 106–110.  https://doi.org/10.1111/j.1475-4754.1975.tb00120.x.CrossRefGoogle Scholar
  30. Santonja, M., & Pérez-González, A. (2001). Lithic artifacts from the lower levels of Ambrona (Spain)—taphonomic features. In G. Cavaretta, P. Gioia, M. Mussi, & M. R. Palomo (Eds.), The world of elephants—international congress, Rome, 2001 (pp. 592–596). Rome: Consiglio Nazionale delle Ricerche.Google Scholar
  31. Shackley, M. S. (1974). Stream abrasion of flint implements. Nature, 248(5448), 501–502.CrossRefGoogle Scholar
  32. Vaughan, P. C. (1985). Use-wear analysis of flaked stone tools. Tucson: The University of Arizona Press.Google Scholar
  33. Vermeersch, P. (2001). Middle Paleolithic settlement patterns in West European open-air sites: possibillities and problems. In N. Conard (Ed.), Settlement dynamics of the Middle Paleolithic and the Middle Stone Age (pp. 395–417). Tübingen: Kerns.Google Scholar
  34. Villa, P., & Courtin, J. (1983). The interpretation of stratified sites: a view from underground. Journal of Archaeological Science, 10(3), 267–281.CrossRefGoogle Scholar
  35. Wymer, J. (1968). Lower Palaeolithic archaeology in Britain as represented by the Thames Valley. London: John Baker.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Departamento de Prehistoria y ArqueologíaUniversidad Autónoma de MadridMadridSpain

Personalised recommendations