Advertisement

Journal of Archaeological Method and Theory

, Volume 26, Issue 1, pp 112–134 | Cite as

Spatial Prediction: Reconstructing the “Spatiality” of Social Activities at the Intra-Site Scale

  • Katia Francesca AchinoEmail author
  • Juan Antonio Barceló
Article

Abstract

Predictive modelling has proved its effectiveness for landscape analysis at inter-site scales, searching for the hidden rules guiding the most probable placement of settlements. In this paper, we suggest using similar spatial models at smaller intra-site scales, to discover apparent rules in the placement of activity areas within a settlement. In so doing, the most probable placement of social activities can be predicted in terms of the statistical properties of the precise locations where artefacts and ecofacts have been observed. As predictive tools in an intra-site scale, we advocate in this paper the use of spatial interpolation techniques. Through their application to a concrete case study from Bronze Age Central Italy, the advantages and limitations of this approach are also discussed.

Keywords

Social activities Intra-site spatial analysis Geostatistics Spatial interpolation Accumulation 

Notes

Acknowledgments

We are grateful to Soprintendenza per i Beni Archeologici del Lazio e dell’Etruria Meridionale, represented in this case by Micaela Angle, who allowed to study the surface layers of the archaeological context analysed in this paper. Furthermore, we are grateful to Beatriz Pino Úria and Antonio Tagliacozzo (Soprintendenza al Museo Nazionale Preistorico Etnografico “L. Pigorini”, Sezione Paleontologia del Quaternario e Archeozoologia), that firstly analysed and subdivided the archeozoological remains. We thank three anonymous reviewers who made relevant suggestions to improve the paper. Any remaining errors or misunderstandings are responsibility of the authors.

Funding Information

This work was supported by both the Departament d’Universitats, Recerca i Societat de la Informació of the Generalitat de Catalunya and the Spanish Ministry of Science and Innovation, through the Grant No. HAR2012-31036 and HAR2016-76534-C2-1-R. The first author also acknowledges for her grant from the Program of Formation of Investigators F.I. 2013, managed by AGAUR (Generalitat de Catalunya).

References

  1. Achino, K. F. (2016). From micro to macro spatial dynamics in the Villaggio delle Macine between XIX-XVI century BC. Unpublished PhD dissertation, Universitat Autónoma de Barcelona, Prehistory Department.Google Scholar
  2. Achino, K. F., & Capuzzo, G. (2015). The quantification of spatio-temporal distributions of archaeological data: from counts to frequencies. Archeologia e calcolatori, 26, 59–75.Google Scholar
  3. Achino, K. F., Angle, M., & Barceló, J. A. (2016). Predicting the accumulative consequences of abandonment processes. Intra-site analysis of lakeside settlements. In S. Campana, R. Scopigno, G. Carpentiero, & M. Cirillo (Eds.), CAA2015. Keep the revolution going (pp. 723–731). Oxford: Archaeopress.Google Scholar
  4. Angle, M. (2007). Comune di Castel Gandolfo. Villaggio delle Macine. In C. Belardelli (Ed.), Repertorio dei siti protostorici del Lazio. Province di Roma, Viterbo e Frosinone (pp. 173–181). All’Insegna del Giglio: Firenze.Google Scholar
  5. Angle, M., Lugli, F., & Zarattini, A. (2002). Lago Albano: il “Villaggio delle Macine”. In S. Rizzo (Ed.), Roma Città del Lazio (pp. 52–56). Roma: De Luca.Google Scholar
  6. Angle, M., Cerino, P., Granata, G., Mancini, D., Malinconico, R., & Tomei, N. (2014). Il sito su impalcato ligneo del Villaggio delle Macine a Castel Gandolfo. In E. Calandra, G. Ghini, & Z. Mari (Eds.), Atti del Convegno “Decimo Incontro di Studi sul Lazio e Sabina” Roma, 4–6 giugno 2013 (pp. 315–318). Roma: Lavori e Studi della Soprintendenza per i Beni Archeologici del Lazio.Google Scholar
  7. Bailey, G. (2007). Time perspectives, palimpsests and the archaeology of time. Journal of Anthropological Archaeology, 26(2), 198–223.Google Scholar
  8. Balakrishnan, N., & Lai, C. (2009). Continuous bivariate distributions. Berlin: Springer.Google Scholar
  9. Barceló, J. A., & Mameli, L. (2010). Frequency seriation and temporal order. A Zooarchaeological study. In F. Nicolucci & S. Hermon (Eds.), Beyond the artefact. Digital interpretation of the past (pp. 451–457). Archaeolingua: Budapest.Google Scholar
  10. Barceló, J. A., & Maximiano, A. (2012). The mathematics of domestic spaces. In M. Madella, G. Kovács, B. Berzsényi, & I. Briz (Eds.), The archaeology of household (pp. 6–22). Oxford: Oxbow.Google Scholar
  11. Barceló, J. A., Achino, K. F., Bogdanovic, I., Capuzzo, G., Del Castillo, F., Moitinho De Almeida, V., & Negre, J. (2015). Measuring, counting and explaining: an introduction to mathematics in archaeology. In J. A. Barceló & I. Bogdanovic (Eds.), Mathematics and archaeology (pp. 3–64). Boca Raton: CRC Press.Google Scholar
  12. Barnett, V., & Lewis, T. (1994). Outliers in statistical data (3rd ed.). Chichester: John Wiley & Sons.Google Scholar
  13. Barton, C. M., Bernabeu, J., Aura, J. E., Garcia, O., Schmich, S., & Molina, L. (2004). Long-term socioecology and contingent landscapes. Journal of Archaeological Method and Theory, 11(3), 253–295.Google Scholar
  14. Binford, L. R. (1978). Dimensional analysis of behavior and site structure: learning from an Eskimo hunting stand. American Antiquity, 43(03), 330–361.Google Scholar
  15. Binford, L. R. (1981). Behavioral archaeology and the “Pompeii premise”. Journal of Anthropological Research, 37(3), 195–208.Google Scholar
  16. Blankholm, H. P. (1991). Intra-site spatial analysis in theory and practice. Aarhus: Aarhus University Press.Google Scholar
  17. Brain, C. K. (1980). Some criteria for the recognition of bone-collecting agencies in African caves. In A. K. Behrensmeyer & A. P. Hill (Eds.), Fossils in the making: vertebrate taphonomy and paleoecology (pp. 108–130). Chicago: University of Chicago Press.Google Scholar
  18. Buonaccorsi, J. P., Elkinton, J. S., Evans, S. R., & Liebhold, A. M. (2001). Measuring and testing for spatial synchrony. Ecology, 82(6), 1668–1679.Google Scholar
  19. Carleton, W. C., Conolly, J., & Ianonne, G. (2012). A locally-adaptive model of archaeological potential (LAMAP). Journal of Archaeological Science, 39(11), 3371–3385.Google Scholar
  20. Carr, C. (1984). The nature of organization of intrasite archaeological records and spatial analytic approaches to their investigation. In M. B. Schiffer (Ed.), Advances in archaeological method and theory (Vol. 7, pp. 103–222). Orlando: Academic Press.Google Scholar
  21. Chiarucci, P. (1985). Materiali dell’età del Bronzo nelle acque del Lago Albano. Archeologia Laziale, 7, 34–39.Google Scholar
  22. Chiarucci, P. (1986–88). Il “Villaggio delle Macine” nel Lago Albano. Annali Benacensi, 9, 407-419.Google Scholar
  23. Chiarucci, P. (1995–6). Il Villaggio delle Macine sommerso nelle acque del Lago Albano. Bollettino di Archeologia Subacquea, 2-3, 176-183.Google Scholar
  24. Chilès, J., & Delfiner, P. (1999). Geostatistics: modeling spatial uncertainty. New York: John Wiley & Sons.Google Scholar
  25. Crema, E. R. (2015). Time and probabilistic reasoning in settlement analysis. In J. A. Barceló & I. Bogdanovic (Eds.), Mathematics and archaeology (pp. 314–334). Boca Raton: CRC Press.Google Scholar
  26. Crema, E. R., Bevan, A., & Lake, M. W. (2010). A probabilistic framework for assessing spatio-temporal point patterns in the archaeological record. Journal of Archaeological Science, 37(5), 1118–1130.Google Scholar
  27. Cressie, N. (1990). The origins of kriging. Mathematical Geology, 22(3), 239–252.Google Scholar
  28. D’Ambrosio, E., Giaccio, B., Lombardi, L., Marra, F., Rolfo, M. F., & Sposato, A. (2009). L’attività recente del centro eruttivo di Albano tra scienza e mito: un’analisi critica del rapporto tra il Vulcano Laziale e la storia dell’Area Albana. In G. Ghini & Z. Mari (Eds.), Atti del Convegno “Quinto Incontro di Studi sul Lazio e Sabina”, Roma, 4–6 marzo 2009 (pp. 125–136). Roma: L’Erma di Bretschneider.Google Scholar
  29. De Smith, M., Goodchild, M. F., & Longley, P. A. (2015). Geospatial analysis. A comprehensive guide to principles, techniques and software tools (5th ed.). Leicester: The Winchelsea Press.Google Scholar
  30. Deravignone, L., Blankholm, H. P., & Pizziolo, G. (2015). Predictive modeling and artificial neural networks: from model to survey. In J. A. Barceló & I. Bogdanovic (Eds.), Mathematics and archaeology (pp. 335–351). Boca Raton: CRC Press.Google Scholar
  31. Djindjian, F. (1988). Improvements in intrasite spatial analysis techniques. In S. P. Q. Rahtz (Ed.), Computer and quantitative methods in archaeology (pp. 95–106). Oxford: British Archaeological Reports.Google Scholar
  32. Dye, T. S., & Buck, C. E. (2015). Archaeological sequence diagrams and Bayesian chronological models. Journal of Archaeological Science, 63, 84–93.Google Scholar
  33. Hassan, F. A. (1987). Re-forming archaeology: a foreword to natural formation processes and the archaeological record. In I. D. T. Nash & M. D. Petraglia (Eds.), Natural formation processes and the archaeological record (pp. 1–9). Oxford: British archaeological Series S352.Google Scholar
  34. Hietala, H. (1984). Intrasite spatial analysis in archaeology. Cambridge: Cambridge University Press.Google Scholar
  35. Hilton, M. R. (2003). Quantifying post-depositional redistribution of the archaeological record produced by freeze–thaw and other mechanisms: an experimental approach. Journal of Archaeological Method and Theory, 10(3), 165–202.Google Scholar
  36. Hodder, I., & Orton, C. (1976). Spatial analysis in archaeology. Cambridge: Cambridge University Press.Google Scholar
  37. Isaaks, E. H., & Srivastava, R. M. (1989). An introduction to applied geostatistics. New York: Oxford University Press.Google Scholar
  38. Judge, J. W., & Sebastian, L. (1988). Quantifying the present and predicting the past: theory, method and application of archaeological predictive modeling. Denver: U.S. Department of the Interior, Bureau of Land Management.Google Scholar
  39. Kelly, R. L., & Thomas, D. H. (2013). Archaeology: down to earth (6th ed.). Wadsworth: Cengage Learning.Google Scholar
  40. Kohler, T. A., & Parker, S. C. (1986). Predictive models for archaeological resource location. In M. B. Schiffer (Ed.), Advances in archaeological method and theory (Vol. 9, pp. 397–452). New York: New York Academic.Google Scholar
  41. Kvamme, K. L. (1990). The fundamental principles and practice of predictive archaeological modelling. In A. Voorrips (Ed.), Mathematics and information science in archaeology: a flexible framework (pp. 257–295). Bonn: Holos Verlag.Google Scholar
  42. Lancelotti, C., Negre Pérez, J., Alcaina-Mateos, J., & Carrer, F. (2017). Intra-site spatial analysis in ethnoarchaeology. Environmental Archaeology, 1–11.Google Scholar
  43. Lindsey, J. (1995). Modelling frequency and count data. Oxford: Oxford University Press.Google Scholar
  44. Llobera, M. (2012). Life on a pixel: challenges in the development of digital methods within an “interpretive” landscape archaeology framework. Journal of Archaeological Method and Theory, 19(4), 495–509.Google Scholar
  45. Lloyd, C. D., & Atkinson, P. M. (2004). Archaeology and geostatistics. Journal of Archaeological Science, 31(2), 151–165.Google Scholar
  46. Lock, G., & Molyneaux, B. L. (2006). Confronting scale in archaeology. New York: Springer.Google Scholar
  47. Lucas, G. (2008). Time and archaeological event. Cambridge Archaeological Journal, 18(1), 59–65.Google Scholar
  48. Lucas, G. (2012). Understanding the archaeological record. Cambridge: Cambridge University Press.Google Scholar
  49. Mameli, L., Barcelò, J. A., & Estevez, J. (2002). The statistics of archaeological deformation processes. An archaeological experiment. In G. Burenhult, J. Arvidssen, & J. (Eds.), Archaeology at the interface (pp. 221–232). Oxford: Archeopress.Google Scholar
  50. March, J. G., & Olsen, J. P. (1986). Garbage can models of decision making in organizations. Ambiguity and Command, 10, 11–35.Google Scholar
  51. Maximiano, A. (2007). Teoría Geoestadística aplicada al análisis de la variabilidad espacial arqueológica intra-site. Unpublished Doctoral dissertation, Tesis doctoral, Universidat Autónoma de Barcelona, Department of Prehistory.Google Scholar
  52. Mehrer, M., & Westcott, K. (2006). GIS and archaeological predictive modelling: large-scale approaches to establish a baseline for site location models. London: Taylor and Francis.Google Scholar
  53. Nobles, G. (2016). Dwelling on the edge of the Neolithic: investigating human behaviour through the spatial analysis of Corded Ware settlement material in the Dutch coastal wetlands (2900–2300 cal BC). PhD thesis. University of Groningen.Google Scholar
  54. Oliver, M. A., & Webster, R. (1990). Kriging: a method of interpolation for geographical information systems. International Journal of Geographical Information System, 4(3), 313–332.Google Scholar
  55. Orton, C. (2004). Point pattern analysis revisited. Archaeologia e Calcolatori, 15, 299–315.Google Scholar
  56. Peeters, A., Zude, M., Käthner, J., Ünlü, M., Kanber, R., Hetzroni, A., & Ben-Gal, A. (2015). Getis–Ord’s hot-and cold-spot statistics as a basis for multivariate spatial clustering of orchard tree data. Computers and Electronics in Agriculture, 111, 140–150.Google Scholar
  57. Pielou, E. C. (1977). Mathematical ecology. New York: Wiley.Google Scholar
  58. Pizziolo, G., & Sarti, L. (2015). Predicting prehistory: predictive models and field research methods for detecting prehistoric contexts. Siena: Museo e Istituto Fiorentino di Preistoria “Paolo Graziosi”.Google Scholar
  59. Rathje, W. L., & Murphy, C. (2001). Rubbish!: the archaeology of garbage. New York: University of Arizona Press.Google Scholar
  60. Reno, J. (2015). Waste and waste management. Annual Review of Anthropology, 44(1), 557–572.Google Scholar
  61. Riris, P. (2017). Towards an artefact’s-eye view: non-site analysis of discard patterns and lithic technology in Neotropical settings with a case from Misiones province, Argentina. Journal of Archaeological Science: Reports, 11, 626–638.Google Scholar
  62. Scanlan, J. (2005). On garbage. Chicago: Reaktion Books.Google Scholar
  63. Schiffer, M. B. (1976). Behavioral archaeology. New York: Academic Press.Google Scholar
  64. Schiffer, M. B. (1987). Formation processes of the archaeological record. Albuquerque: University of New Mexico Press.Google Scholar
  65. Setianto, A., & Triandini, T. (2013). Comparison of kriging and inverse distance weighted (IDW) interpolation methods in lineament extraction and analysis. Journal of Applied Geology, 5(1), 21–29.Google Scholar
  66. Stein, M. L. (2012). Interpolation of spatial data: some theory for kriging. New York: Springer.Google Scholar
  67. Surovell, T. A. (2012). Toward a behavioral ecology of lithic technology: cases from Paleoindian archaeology. Arizona: University of Arizona Press.Google Scholar
  68. Ullah, I. I., Duffy, P. R., & Banning, E. B. (2015). Modernizing spatial micro-refuse analysis: new methods for collecting, analyzing, and interpreting the spatial patterning of micro-refuse from house-floor contexts. Journal of Archaeological Method and Theory, 22(4), 1238–1262.Google Scholar
  69. van Leusen, M., & Kamermans, H. (2005). Predictive modelling for archaeological heritage management: a research agenda. Amersfoort: Rijksdienst voor het Oudheidkundig Bodemonderzoek.Google Scholar
  70. van Leusen, M., Pizziolo, G., & Sarti, L. (2011). Hidden landscapes of Mediterranean Europe. Cultural and methodological biases in pre- and protohistoric landscape studies. Proceedings International Meeting, Siena 2007. BAR International Series 2320. Oxford: Archaeopress.Google Scholar
  71. Varien, M. D., & Ortman, S. G. (2005). Accumulations research in the Southwest United States: middle-range theory for big-picture problems. World Archaeology, 37(1), 132–155.Google Scholar
  72. Verhagen, P. (2006). Quantifying the qualified: the use of multicriteria methods and Bayesian statistics for the development of archaeological predictive models. In M. W. Mehrer & K. L. Wescott (Eds.), GIS and archaeological site location modeling (pp. 191–216). Boca Raton: CRC Press.Google Scholar
  73. Verhagen, P. (2007). Case studies in archaeological predictive modeling. Leiden: Leiden University Press.Google Scholar
  74. Verhagen, P., & Whitley, T. G. (2012). Integrating archaeological theory and predictive modeling: a live report from the scene. Journal of Archaeological Method and Theory, 19(1), 49–100.Google Scholar
  75. Wandsnider, L. (1996). Describing and comparing archaeological spatial structures. Journal of Archaeological Method and Theory, 3(4), 319–384.Google Scholar
  76. Whitley, T. G. (2003). GIS as an interpretative tool for addressing risk management and cognitive spatial dynamics in a slave society. In Doerr, M., &Sarris, A. (Eds.), CAA 2002. The digital heritage of archaeology. Computer applications and quantitative methods in archaeology. Proceedings of the 30th Conference, Heraklion, Crete, April 2002, archive of monuments and publications (pp. 209–215). Heraklion: Hellenic Ministry of Culture.Google Scholar
  77. Williams, C. K. (1998). Prediction with Gaussian processes: from linear regression to linear prediction and beyond. In M. I. Jordan (Ed.), Learning in graphical models (pp. 599–621). Cambridge: MIT Press.Google Scholar
  78. Zarattini, A. (2003). Il Villaggio delle Macine: indagini nel lago di Albano (Castel Gandolfo, RM). In A. Benini & M. Giacobelli (Eds.), Atti del II Convegno di archeologia subacquea. Castiglioncello, 7-9 settembre 2001. Bari: Edipuglia.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Katia Francesca Achino
    • 1
    • 2
    Email author
  • Juan Antonio Barceló
    • 1
  1. 1.Quantitative Archaeology Lab (LAQU), Department of PrehistoryAutonomous University of BarcelonaBellaterraSpain
  2. 2.Institute of Archaeology ZRC SAZULjubljanaSlovenia

Personalised recommendations