Advertisement

A Critical Review of Four Efforts to Resurrect MNI in Zooarchaeology

  • R. Lee LymanEmail author
Article

Abstract

Evaluation of zooarchaeology’s quantitative units known as NISP (number of identified specimens) and MNI (minimum number of individuals) during the last three decades of the twentieth century suggested neither provided ratio scale measures of taxonomic abundances. Many researchers at that time began to use NISP as often as MNI to measure taxonomic abundances. In part because of a desire to determine the composition of human diet more precisely, and in light of the fact that different taxa have different numbers of identifiable bones, four zooarchaeologists have, since 1990, used assemblages with known ANI (actual number of individuals) to evaluate whether NISP or MNI provides the most accurate measure of ANI. ANI data from ethnoarchaeological and historical contexts suggest taxonomic abundance data quantified as NISP or MNI are ordinal scale at best, something previously shown to be highly probable. Experimental data used to evaluate the accuracy of NISP and MNI as measures of ANI are either inappropriate or not designed to assess which quantitative unit produces the most accurate measure. A new quantitative unit proposed as an alternative to MNE (minimum number of [skeletal] elements)—the NDE (number of distinct elements)—is said to provide proportional abundances of taxa but demonstrably undercounts skeletal parts and fails to provide ratio scale abundance data.

Keywords

Experimental zooarchaeology Minimum number of individuals Number of identified specimens Quantitative units Taxonomic abundances Zooarchaeology 

Notes

Acknowledgements

Helpful comments by five anonymous reviewers, particularly the two with very sharp eyes and pencils, helped me polish the text.

References

  1. Adams, W. R. (1949). Faunal remains from the Angel Site. Master of Arts thesis. Bloomington: Indiana University.Google Scholar
  2. Adams, B. J., & Konigsberg, L. W. (2008). How many people? Determining the number of individuals represented by commingled human remains. In B. J. Adams & J. E. Byrd (Eds.), Recovery, analysis, and identification of commingled human remains (pp. 241–255). Totowa: Humana Press.Google Scholar
  3. Allen, J., & Guy, J. B. M. (1984). Optimal estimations of individuals in archaeological faunal assemblages: how minimal is the MNI? Archaeology in Oceania, 19, 41–47.Google Scholar
  4. Allen, M. S., & Nagaoka, L. A. (2004). “In the footsteps of von Haast. . . the discoveries something grand”: the emergence of zooarchaeology in New Zealand. In L. Furey & S. Holdaway (Eds.), Change through time: 50 years of New Zealand archaeology (pp. 193–214). Auckland: New Zealand Archaeological Association Monograph 26.Google Scholar
  5. Audouze, F., & Enloe, J. G. (1997). High resolution archaeology at Verberie: limits and interpretations. World Archaeology, 29, 195–207.Google Scholar
  6. Badgley, C. (1986). Counting individuals in mammalian fossil assemblages from fluvial environments. PALAIOS, 1, 328–338.Google Scholar
  7. Bailey, G. (2007). Time perspectives, palimpsests and the archaeology of time. Journal of Anthropological Archaeology, 26, 198–223.Google Scholar
  8. Bennington, J. B., & Aronson, M. F. J. (2012). Reconciling scale in paleontological and neontological data: dimensions of time, space, and taxonomy. In J. Louys (Ed.), Paleontology in ecology and conservation (pp. 39–67). Berlin: Springer-Verlag.Google Scholar
  9. Binford, L. R. (1978). Nunamiut ethnoarchaeology. New York: Academic Press.Google Scholar
  10. Binford, L. R. (1981). Bones: ancient men and modern myths. Orlando: Academic Press.Google Scholar
  11. Binford, L. R. (1984). Faunal remains from Klasies River mouth. Orlando: Academic Press.Google Scholar
  12. Bobrowsky, P. T. (1982). An examination of Casteel’s MNI behavior analysis: a reductionist approach. Midcontinental Journal of Archaeology, 7, 173–184.Google Scholar
  13. Brain, C. K. (1969). The contribution of the Namib Desert Hottentots to an understanding of australopithecine bone accumulations. Scientific Papers of the Namib Desert Research Station, 39, 13–22.Google Scholar
  14. Brain, C. K. (1981). The hunters or the hunted? An introduction to African cave taphonomy. Chicago: University of Chicago Press.Google Scholar
  15. Breitburg, E. (1991). Verification and reliability of NISP and MNI methods of quantifying taxonomic abundance: a view from historic site zooarchaeology. In J. R. Purdue, W. E. Klippel, & B. W. Styles (Eds.), Beamers, bobwhites, and blue-points: tributes to the career of Paul W. Parmalee (pp. 153–162). Springfield: Illinois State Museum Scientific Papers 23.Google Scholar
  16. Bunn, H. T. (1982). Meat-eating and human evolution: atudies on the diet and subsistence patterns of Plio-Pleistocene hominids in east Africa. Doctoral dissertation. Berkeley: University of California.Google Scholar
  17. Cannon, M. D. (2013). NISP, bone fragmentation, and the measurement of taxonomic abundance. Journal of Archaeological Method and Theory, 20, 397–419.Google Scholar
  18. Carlson, C. C. (1999). History of zooarchaeology in New England. In M. A. Levine, K. E. Sassaman, & M. S. Nassaney (Eds.), The archaeological Northeast (pp. 171–181). Westport: Bergin & Garvey.Google Scholar
  19. Casteel, R. W. (1977a). Characterization of faunal assemblages and the minimum number of individuals determined from paired elements: continuing problems in archaeology. Journal of Archaeological Science, 4, 125–134.Google Scholar
  20. Casteel, R. W. (1977b). A consideration of the behaviour of the minimum number of individuals index: a problem in faunal characterization. OSSA, 3(4), 141–151.Google Scholar
  21. Chaplin, R. E. (1971). The study of animal bones from archaeological sites. London: Seminar Press.Google Scholar
  22. Clason, A. T. (1972). Some remarks on the use and presentation of archaeozoological data. Helenium, 12, 139–153.Google Scholar
  23. Crabtree, P. J. (2018). The value in studying large faunal collections using traditional zooarchaeological methods: a case study from Anglo-Saxon England. In C. M. Giovas & M. J. LeFebvre (Eds.), Zooarchaeology in practice: case studies in methodology and interpretation in archaeofaunal analysis (pp. 173–188). Cham: Springer.Google Scholar
  24. Dobney, K., & Rielly, K. (1988). A method for recording archaeological animal bones: the use of diagnostic zones. Circa, 5, 79–96.Google Scholar
  25. Domínguez-Rodrigo, M. (2012). Critical review of the MNI (minimum number of individuals) as a zooarchaeological unit of quantification. Archaeological and Anthropological Sciences, 4, 47–59.Google Scholar
  26. Driver, J. C. (1992). Identification, classification and zooarchaeology. Circa, 9(1), 35–47.Google Scholar
  27. Dunnell, R. C., & Dancey, W. S. (1983). The siteless survey: a regional scale data collection strategy. In M. B. Schiffer (Ed.), Advances in archaeological method and theory (Vol. 6, pp. 267–287). New York: Academic Press.Google Scholar
  28. Eck, G. G. (2007). The effects of collection strategy and effort on faunal recovery: a case study of the American and French collections from the Shungura Formation, Ethiopia. In R. Bobé, Z. Alemseged, & A. K. Behrensmeyer (Eds.), Hominin environments in the East African Pliocene: an assessment of the faunal evidence (pp. 183–215). Dordrecht: Springer.Google Scholar
  29. Enloe, J. G. (2003). Acquisition and processing of reindeer in the Paris basin. In S. Costamagno & V. Laroulandie (Eds.), Zooarchaeological insights into Magdalenian lifeways (pp. 23–31). Oxford: BAR International Series 1144.Google Scholar
  30. Enloe, J. G., & David, F. (1992). Food sharing in the Paleolithic: carcass refitting at Pincevent. In J. L. Hofman & J. G. Enloe (Eds.), Piecing together the past: applications of refitting studies in archaeology (pp. 296–315). Oxford: BAR International Series 578.Google Scholar
  31. Fieller, N. R. J., & Turner, A. (1982). Number estimation in vertebrate samples. Journal of Archaeological Science, 9, 49–62.Google Scholar
  32. Foley, R. (1981). Off-site archaeology: an alternative approach for the short-sited. In I. Hodder, G. Isaac, & N. Hammond (Eds.), Pattern of the past: studies in honour of David Clarke (pp. 157–183). Cambridge: Cambridge University Press.Google Scholar
  33. Ford, J. A. (1962). A quantitative method for deriving cultural chronology. Technical Manual no. 1. Washington, DC: Pan American Union.Google Scholar
  34. Gautier, A. (1984). How do I count you, let me count the ways? Problems in archaeozoological quantification. In C. Grigson & J. Clutton-Brock (Eds.), Animals and archaeology 4: husbandry in Europe (pp. 237–251). Oxford: BAR International Series 227.Google Scholar
  35. Gifford, D. P. (1981). In M. B. Schiffer (Ed.), Taphonomy and paleoecology: a critical review of archaeology’s sister disciplines (Vol. 4, pp. 365–438). New York: Academic Press.Google Scholar
  36. Gifford-Gonzalez, D., & Hildebrandt, W. R. (2012). If mussels weighed a ton: problems with quantifying Santa Barbara Channel archaeofaunas. In M. A. Glassow & T. L. Joslin (Eds.), Exploring methods of faunal analysis: insights from California archaeology (pp. 97–107). Perspectives in California Archaeology Vol. 9. Los Angeles: Cotsen Institute of Archaeology, University of California.Google Scholar
  37. Gilinsky, N. L., & Bennington, J. B. (1994). Estimating numbers of whole individuals from collections of body parts: a taphonomic limitation of the paleontological record. Paleobiology, 20, 245–258.Google Scholar
  38. Giovas, C. M. (2009). The shell game: analytic problems in archaeological mollusc quantification. Journal of Archaeological Science, 36, 1557–1564.Google Scholar
  39. Giovas, C. M. (2018). Impact of analytic protocols on archaeofish abundance, richness, and similarity: a Caribbean-Pacific crossover study. In C. M. Giovas & M. J. LeFebvre (Eds.), Zooarchaeology in practice: case studies in methodology and interpretation in archaeofaunal analysis (pp. 59–89). Cham, Switzerland: Springer.Google Scholar
  40. Gobalet, K. W. (2001). A critique of faunal analysis: inconsistency among experts in blind tests. Journal of Archaeological Science, 28, 377–386.Google Scholar
  41. Grayson, D. K. (1973). On the methodology of faunal analysis. American Antiquity, 38, 432–439.Google Scholar
  42. Grayson, D. K. (1978). Minimum numbers and sample size in vertebrate faunal analysis. American Antiquity, 43, 53–65.Google Scholar
  43. Grayson, D. K. (1979). On the quantification of vertebrate archaeofaunas. In M. B. Schiffer (Ed.), Advances in archaeological method and theory (Vol. vol. 2, pp. 199–237). New York: Academic Press.Google Scholar
  44. Grayson, D. K. (1984). Quantitative zooarchaeology: topics in the analysis of archaeological faunas. Orlando, FL: Academic Press.Google Scholar
  45. Grayson, D. K., & Frey, C. J. (2004). Measuring skeletal part representation in archaeological faunas. Journal of Taphonomy, 2, 27–42.Google Scholar
  46. Guthrie, R. D. (1984). Alaskan megabucks, megabulls, and megagrams: the issue of Pleistocene gigantism. In H. H. Genoways & M. R. Dawson (Eds.), Contributions in Quaternary vertebrate paleontology: a volume in memorial to John E. Guilday (pp. 482–510). Special Publication no. 8, Pittsburgh, PA: Carnegie Museum of Natural History.Google Scholar
  47. Harris, M., Weisler, M., & Faulkner, P. (2015). A refined protocol for calculating MNI in archaeological molluscan shell assemblages: a Marshall Island case study. Journal of Archaeological Science, 57, 168–179.Google Scholar
  48. Hesse, B. (1982). Bias in the zooarchaeological record: suggestions for interpretation of bone counts in faunal samples from the Plains. In D. H. Ubelaker & H. J. Viola (Eds.), Plains Indian studies: a collection of essays in honor of John C. Ewers and Waldo R. Wedel (pp. 157–172). Washington, DC: Smithsonian Contributions to Anthropology no. 30.Google Scholar
  49. Hesse, B., & Wapnish, P. (1985). Animal bone archeology: from objectives to analysis. Manuals in archeology 5. Washington, DC: Taraxacum.Google Scholar
  50. Holdaway, S., & Wandsnider, L. (Eds.). (2008). Time in archaeology: time perspectivism revisited. Salt Lake City: University of Utah Press.Google Scholar
  51. Holtzman, R. C. (1979). Maximum likelihood estimation of fossil assemblage composition. Paleobiology, 5, 77–90.Google Scholar
  52. Horwitz, L. K. (2002). The development of archaeozoological research in Israel and the West Bank. Archaeofauna, 11, 131–145.Google Scholar
  53. Hudson, J. L. (1990). Advancing methods in zooarchaeology: an ethnoarchaeological study among the Aka. Doctoral dissertation. Santa Barbara: Department of Anthropology, University of California.Google Scholar
  54. Hudson, J. L. (1993). The impacts of domestic dogs on bone in forager camps; or, the dog-gone bones. In J. [L.] Hudson (Ed.), From bones to behavior: ethnoarchaeological and experimental contributions to the interpretation of faunal remains (pp. 301–323). Occasional Paper no. 21. Carbondale: Center for Archaeological Investigations, Southern Illinois University.Google Scholar
  55. Jamniczky, H. A., Brinkman, D. B., & Russell, A. P. (2008). How much is enough? A repeatable, efficient, and controlled sampling protocol for assessing taxonomic diversity and abundance in vertebrate microfossil assemblages. In J. T. Sankey & S. Baszio (Eds.), Vertebrate microfossil assemblages: their role in paleoecology and paleobiogeography (pp. 9–16). Bloomington: Indiana University Press.Google Scholar
  56. Jochim, M. A. (1976). Hunter-gatherer subsistence and settlement: a predictive model. New York: Academic Press.Google Scholar
  57. Joslin, T. L. (2012). Analytical sampling strategies for marine fish remains: measuring taxonomic diversity and abundance in central California middens. In M. A. Glassow & T. L. Joslin (Eds.), Exploring methods of faunal analysis: insights from California archaeology (pp. 135–147). Perspectives in California Archaeology Vol. 9. Los Angeles: Cotsen Institute of Archaeology, University of California.Google Scholar
  58. Klein, R. G., & Cruz-Uribe, K. (1984). The analysis of animal bones from archeological sites. Chicago: University of Chicago Press.Google Scholar
  59. Knüsel, C. J., & Outram, A. K. (2004). Fragmentation: the zonation method applied to fragmented human remains from archaeological and forensic contexts. Environmental Archaeology, 9(1), 85–97.Google Scholar
  60. Lambacher, N., Gerdau-Rodnic, K., Bonthorne, E., & de Tarazaga Montero, F. J. V. (2016). Evaluating three methods to estimate the number of individuals from commingled context. Journal of Archaeological Science: Reports, 10, 674–683.Google Scholar
  61. Lyman, R. L. (1984). Bone density and differential survivorship of fossil classes. Journal of Anthropological Archaeology, 3, 259–299.Google Scholar
  62. Lyman, R. L. (1985). Bone frequencies: differential transport, in situ destruction, and the MGUI. Journal of Archaeological Science, 12, 221–236.Google Scholar
  63. Lyman, R. L. (1994a). Quantitative units and terminology in zooarchaeology. American Antiquity, 59, 36–71.Google Scholar
  64. Lyman, R. L. (1994b). Relative abundances of skeletal specimens and taphonomic analysis of vertebrate remains. PALAIOS, 9, 288–298.Google Scholar
  65. Lyman, R. L. (1994c). Vertebrate taphonomy. Cambridge: Cambridge University Press.Google Scholar
  66. Lyman, R. L. (2006). Identifying bilateral pairs of deer (Odocoileus sp.) bones: how symmetrical is symmetrical enough? Journal of Archaeological Science, 33, 1256–1265.Google Scholar
  67. Lyman, R. L. (2008). Quantitative paleozoology. Cambridge: Cambridge University Press.Google Scholar
  68. Lyman, R. L. (2015a). The history of “laundry lists” in North American zooarchaeology. Journal of Anthropological Archaeology, 39, 42–50.Google Scholar
  69. Lyman, R. L. (2015b). On the variable relationship between NISP and NTAXA in bird remains and in mammal remains. Journal of Archaeological Science, 53, 291–296.Google Scholar
  70. Lyman, R. L. (2016). Theodore E. White and the development of zooarchaeology in North America. Lincoln: University of Nebraska Press.Google Scholar
  71. Lyman, R. L. (2017). Paleoenvironmental reconstruction from faunal remains: ecological basics and analytical assumptions. Journal of Archaeological Research, 25, 315–371.Google Scholar
  72. Lyman, R. L. (2018a). The history of MNI in North American zooarchaeology. In C. M. Giovas & M. LeFebvre (Eds.), Zooarchaeology in practice: case studies in methodology and interpretation in archaeofaunal analysis (pp. 13–33). New York: Springer.Google Scholar
  73. Lyman, R. L. (2018b). Observations on the history of zooarchaeological quantitative units: why NISP, then MNI, then NISP again? Journal of Archaeological Science: Reports, 18, 43–50.Google Scholar
  74. Lyman, R. L., & Ames, K. M. (2007). On the use of species-area curves to detect the effects of sample size. Journal of Archaeological Science, 34, 1985–1990.Google Scholar
  75. Lyman, R. L., & VanPool, T. (2009). Metric data in archaeology: a study of intra-analyst and inter-analyst variation. American Antiquity, 74, 485–504.Google Scholar
  76. Marean, C. W., & Frey, C. J. (1997). Animal bones from caves to cities: reverse utility curves as methodological artifacts. American Antiquity, 62, 698–711.Google Scholar
  77. Medlock, R. C. (1976). Determining the minimum number of individuals in archeological faunal analysis. Master of Arts thesis. Fayetteville: Department of Anthropology, University of Arkansas.Google Scholar
  78. Moore, J. R., Norman, D. B., & Upchurch, P. (2007). Assessing relative abundances in fossil assemblages. Palaeogeography, Palaeoclimatology, Palaeoecology, 253, 317–322.Google Scholar
  79. Morin, E., Ready, E., Boileau, A., Beauval, C., & Coumont, M.-P. (2017a). Problems of identification and quantification in archaeozoological analysis, part I: insights from a blind test. Journal of Archaeological Method and Theory, 24, 886–937.Google Scholar
  80. Morin, E., Ready, E., Boileau, A., Beauval, C., & Coumont, M.-P. (2017b). Problems of identification and quantification in archaeozoological analysis, part II: presentation of an alternative counting method. Journal of Archaeological Method and Theory, 24, 938–973.Google Scholar
  81. Morlan, R. E. (1994). Bison bone fragmentation and survivorship: a comparative method. Journal of Archaeological Science, 21, 797–807.Google Scholar
  82. Münzel, S. C. (1986). Coding system for bone fragments. In L. H. Van Wijngaarden-Bakker (Ed.), Database management and zooarchaeology (pp. 193–195). PACT 14. Strasbourg.Google Scholar
  83. Münzel, S. C. (1988). Quantitative analysis and archaeological site interpretation. ArchaeoZoologia, 2(1, 2), 93–110.Google Scholar
  84. Nichol, R. K., & Creak, G. A. (1979). Matching paired elements among archaeological bone remains: a computer procedure and some practical limitations. Newsletter of Computer Archaeology, 14, 6–17.Google Scholar
  85. Parmalee, P. W. (1985). Identification and interpretation of archaeologically derived animal remains. In R. I. Gilbert & J. H. Mielke (Eds.), The analysis of prehistoric diets (pp. 61–95). New York: Academic Press.Google Scholar
  86. Payne, S. (1975). Partial recovery and sample bias. In A. T. Clason (Ed.), Archaeozoological studies (pp. 7–17). Amsterdam: North-Holland.Google Scholar
  87. Perkins Jr., D. (1973). A critique on the methods of quantifying faunal remains from archaeological sites. In J. Matolcsi (Ed.), Domestikationsforschung und geschichte der haustiere (pp. 367–370). Budapest: Academiai Kiado.Google Scholar
  88. Plog, F. T. (1973). Diachronic anthropology. In C. L. Redman (Ed.), Research and theory in current archeology (pp. 181–198). New York: John Wiley and Sons.Google Scholar
  89. Plog, F. T. (1974). The study of prehistoric change. New York: Academic Press.Google Scholar
  90. Plug, C., & Plug, I. (1990). MNI counts as estimates of species abundance. South African Archaeological Bulletin, 45, 53–57.Google Scholar
  91. Pollock, H. E. D., & Ray, C. E. (1957). Notes on vertebrate animal remains from Mayapan. Department of Archaeology, Carnegie Institution of Washington. Current Reports, 41, 633–656.Google Scholar
  92. Rackham, D. J. (1986). Assessing the relative frequency of species by the application of a stochastic model to a zooarchaeological database. In L. H. van Wijngaarden-Bakker (Ed.), Database management and zooarchaeology (pp. 185–192). Strasbourg: PACT 14.Google Scholar
  93. Reitz, E. J. (1993). Zooarchaeology. In J. K. Johnson (Ed.), The development of Southeastern archaeology (pp. 109–131). Tuscaloosa: University of Alabama Press.Google Scholar
  94. Reitz, E. J., & Wing, E. S. (2008). Zooarchaeology (second ed.). Cambridge: Cambridge University Press.Google Scholar
  95. Ringrose, T. J. (1993). Bone counts and statistics. Journal of Archaeological Science, 20, 121–157.Google Scholar
  96. Robb, J. (2016). What can we really say about skeletal part representation, MNI and funerary ritual? A simulation approach. Journal of Archaeological Science: Reports, 10, 684–692.Google Scholar
  97. Robison, N. D. (1987). Zooarchaeology: its history and development. In A. E. Bogan & N. D. Robison (Eds.), The zooarchaeology of eastern North America: history, method and theory, and bibliography (pp. 1–26). Miscellaneous Paper no. 12. Knoxville: Tennessee Anthropological Association.Google Scholar
  98. Rogers, R. R., Carrano, M. T., Rogers, K. A. C., Perez, M., & Reagan, A. K. (2017). Isotaphonomy in concept and practice: an exploration of vertebrate microfossil bonebeds in the upper cretaceous (Campanian) Judith River Formation, north-central Montana. Paleobiology, 43, 248–273.Google Scholar
  99. Rosell, J., Blasco, R., Fernández-Laso, M. C., Vaquero, M., & Carbonell, E. (2012). Connecting areas: faunal refits as a diagnostic element to identify synchronicity in the Abric Romaní archaeological assemblages. Quaternary International, 252, 56–67.Google Scholar
  100. Schiffer, M. B. (1987). Formation processes of the archaeological record. Albuquerque: University of New Mexico Press.Google Scholar
  101. Smith, B. D. (1975). Middle Mississippi exploitation of animal populations. Anthropological Papers no. 57. Ann Arbor: Museum of Anthropology, University of Michigan.Google Scholar
  102. Staff, G., Powell, E. N., Stanton, R. J., & Cummins, H. (1985). Biomass: is it a useful tool in paleocommunity reconstruction? Lethaia, 18, 209–232.Google Scholar
  103. Stevens, S. S. (1946). On the theory of scales of measurement. Science, 103, 677–680.Google Scholar
  104. Stewart, K. M. (2002). Past and present zooarchaeology in Canada. Archaeofauna, 11, 147–157.Google Scholar
  105. Thomas, D. H. (1975). Nonsite sampling in archaeology: up the creek without a site? In J. W. Mueller (Ed.), Sampling in archaeology (pp. 61–81). Tucson: University of Arizona Press.Google Scholar
  106. Thomas, K. D., & Mannino, M. A. (2017). Making numbers count: beyond minimum numbers of individuals (MNI) for the quantification of mollusc assemblages from shell matrix sites. Quaternary International, 427, 47–58.Google Scholar
  107. Todd, L. C. (1987). Taphonomy of the Horner II bone bed. In G. C. Frison & L. C. Todd (Eds.), The Horner Site: the type site of the Cody Cultural Complex (pp. 107–198). Orlando: Academic Press.Google Scholar
  108. Todd, L. C., & Frison, G. C. (1992). Reassembly of bison skeletons from the Horner Site: a study in anatomical refitting. In J. L. Hofman & J. G. Enloe (Eds.), Piecing together the past: applications of refitting studies in archaeology (pp. 63–82). Oxford: BAR International Series 578.Google Scholar
  109. Todd, L. C., & Stanford, D. J. (1992). Application of conjoined bone data to site structural studies. In J. L. Hofman & J. G. Enloe (Eds.), Piecing together the past: applications of refitting studies in archaeology (pp. 21–35). Oxford: BAR International Series 578.Google Scholar
  110. Travouillon, K. J., Archer, M., Legendre, S., & Hand, S. J. (2007). Finding the minimum sample richness (MSR) for multivariate analyses: implications for palaeoecology. Historical Biology, 19, 315–320.Google Scholar
  111. Trusler, A. K. (2014). The impact of recovery methods on taxonomic richness in Roman faunal assemblages. Archaeometry, 56, 1075–1084.Google Scholar
  112. Vermeij, G. J., & Herbert, G. S. (2004). Measuring relative abundance in fossil and living assemblages. Paleobiology, 30, 1–4.Google Scholar
  113. Voorhies, M. R. (1969). Taphonomy and population dynamics of an early Pliocene vertebrate fauna, Knox County, Nebraska. Contributions to Geology, Special Paper no. 1. Laramie: University of Wyoming.Google Scholar
  114. Watson, J. P. N. (1979). The estimation of the relative frequencies of mammalian species: Khirokitia 1972. Journal of Archaeological Science, 6, 127–137.Google Scholar
  115. White, T. E. (1953). A method of calculating the dietary percentage of various food animals utilized by aboriginal peoples. American Antiquity, 19, 396–398.Google Scholar
  116. Wild, C. J., & Nichol, R. K. (1983). Estimation of the original number of individuals from paired bone counts using estimators of the Krantz type. Journal of Field Archaeology, 10, 1337–1344.Google Scholar
  117. Zar, J. H. (1996). Biostatistical analysis (third ed.). Upper Saddle River, New Jersey: Prentice Hall.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of AnthropologyUniversity of MissouriColumbiaUSA

Personalised recommendations