Advertisement

High-resolution 1H-NMR spectroscopy indicates variations in metabolomics profile of follicular fluid from women with advanced maternal age

  • B. Dogan
  • A. KaraerEmail author
  • G. Tuncay
  • N. Tecellioglu
  • A. Mumcu
Assisted Reproduction Technologies

Abstract

Aim

To reveal whether there are differences in follicular fluid metabolomics profile of women with advanced maternal age (AMA).

Method

The group with advanced maternal age includes 23 patients above the age of 40, and the control group includes 31 patients aged between 25 and 35 years and AMH values above 1.1 ng/mL with no low ovarian response history. A single follicular fluid sample from a MII oocyte obtained during the oocyte pick-up procedure was analyzed with high-resolution 1H-NMR (nuclear magnetic resonance) spectroscopy. The results were evaluated using advanced bioinformatics analysis methods.

Results

Statistical analysis of the NMR spectroscopy data from two groups showed that α-glucose and β-glucose levels of follicular fluid were decreased in the patients with AMA, while in contrast, lactate and trimethylamine N-oxide (TMAO) levels were increased in these patients compared with the controls. In addition to these, there was an increase in alanine levels and a decrease in acetoacetate levels in patients with AMA. However, these changes were not statistically significant.

Conclusion

Obtained results suggest that the follicular cell metabolism of patients with AMA is different from controls. These environmental changes could be associated with the low success rates of IVF treatment seen in these patients.

Keywords

Metabolomics NMR Advanced maternal age Follicular fluid 

Notes

Funding information

This study was supported by the scientific research projects unit of Inonu University (Grant Number 2016/56).

Compliance with ethical standards

All patients included in the study provided written informed consent, and the study protocol was permitted by the Clinical Research Ethics Committee (Number 2015/38).

References

  1. 1.
    Wood JW. Fecundity and natural fertility in humans. Oxf Rev Reprod Biol. 1989;11:61–109.PubMedPubMedCentralGoogle Scholar
  2. 2.
    Te Velde ER, Pearson PL. The variability of female reproductive ageing. Hum Reprod Update. 2002;8(2):141–54.CrossRefGoogle Scholar
  3. 3.
    Tatone C, Amicarelli F, Carbone MC, Monteleone P, Caserta D, Marci R, et al. Cellular and molecular aspects of ovarian follicle ageing. Hum Reprod Update. 2008;14(2):131–42.CrossRefGoogle Scholar
  4. 4.
    Wright VC, Schieve LA, Reynolds MA, Jeng G. Assisted reproductive technology surveillance—United States, 2002. Morbidity and Mortality Weekly Report: Surveillance Summaries. 2005;54(2):1–24.Google Scholar
  5. 5.
    Katz-Jaffe MG, Surrey ES, Minjarez DA, Gustofson RL, Stevens JM, Schoolcraft WB. Association of abnormal ovarian reserve parameters with a higher incidence of aneuploid blastocysts. Obstet Gynecol. 2013;121(1):71–7.PubMedCrossRefPubMedCentralGoogle Scholar
  6. 6.
    Lekamge DN, Barry M, Kolo M, Lane M, Gilchrist RB, Tremellen KP. Anti-Müllerian hormone as a predictor of IVF outcome. Reprod BioMed Online. 2007;14(5):602–10.PubMedCrossRefPubMedCentralGoogle Scholar
  7. 7.
    Nikolaou D, Templeton A. Early ovarian ageing: a hypothesis: detection and clinical relevance. Hum Reprod. 2003;18(6):1137–9.PubMedCrossRefPubMedCentralGoogle Scholar
  8. 8.
    Sauer MV, Paulson RJ, Lobo RA. A preliminary report on oocyte donation extending reproductive potential to women over 40. N Engl J Med. 1990;323(17):1157–60.PubMedCrossRefPubMedCentralGoogle Scholar
  9. 9.
    Fortune JE. Ovarian follicular growth and development in mammals. Biol Reprod. 1994;50(2):225–32.PubMedCrossRefPubMedCentralGoogle Scholar
  10. 10.
    Nandi S, Kumar VG, Manjunatha BM, Gupta PSP. Biochemical composition of ovine follicular fluid in relation to follicle size. Develop Growth Differ. 2007;49(1):61–6.CrossRefGoogle Scholar
  11. 11.
    Revelli A, Delle Piane L, Casano S, Molinari E, Massobrio M, Rinaudo P. Follicular fluid content and oocyte quality: from single biochemical markers to metabolomics. Reprod Biol Endocrinol. 2009;7(1):40.PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Basuino L, Silveira JC. Human follicular fluid and effects on reproduction. JBRA assisted reproduction. 2016;20(1):38–40.PubMedCrossRefPubMedCentralGoogle Scholar
  13. 13.
    McRae C, Baskind NE, Orsi NM, Sharma V, Fisher J. Metabolic profiling of follicular fluid and plasma from natural cycle in vitro fertilization patients—a pilot study. Fertil Steril. 2012;98(6):1449–57.PubMedCrossRefPubMedCentralGoogle Scholar
  14. 14.
    Jayaraman V, Ghosh S, Sengupta A, Srivastava S, Sonawat HM, Narayan PK. Identification of biochemical differences between different forms of male infertility by nuclear magnetic resonance (NMR) spectroscopy. J Assist Reprod Genet. 2014;31(9):1195–204.PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Lindon JC, Nicholson JK, Holmes E, Everett JR. Metabonomics: metabolic processes studied by NMR spectroscopy of biofluids. Concepts in Magnetic Resonance: An Educational Journal. 2000;12(5):289–320.CrossRefGoogle Scholar
  16. 16.
    Kolokolova TN, Savel’ev OY, Sergeev NM. Metabolic analysis of human biological fluids by 1 H NMR spectroscopy. J Anal Chem. 2008;63(2):104.CrossRefGoogle Scholar
  17. 17.
    Gowda GN, Raftery D. Can NMR solve some significant challenges in metabolomics? J Magn Reson. 2015;260:144–60.PubMedCentralCrossRefGoogle Scholar
  18. 18.
    Barding GA, Salditos R, Larive CK. Quantitative NMR for bioanalysis and metabolomics. Anal Bioanal Chem. 2012;404(4):1165–79.PubMedCrossRefPubMedCentralGoogle Scholar
  19. 19.
    Karaer A, Tuncay G, Mumcu A, Dogan B. Metabolomics analysis of follicular fluid in women with ovarian endometriosis undergoing in vitro fertilization. Syst Biol Reprod Med. 2019;65(1):39–47.PubMedCrossRefPubMedCentralGoogle Scholar
  20. 20.
    Atiomo W, Daykin CA. Metabolomic biomarkers in women with polycystic ovary syndrome: a pilot study. MHR: Basic science of reproductive medicine. 2012;18(11):546–53.PubMedPubMedCentralGoogle Scholar
  21. 21.
    Hoffman JM, Lyu Y, Pletcher SD, Promislow DE. Proteomics and metabolomics in ageing research: from biomarkers to systems biology. Essays Biochem. 2017;61(3):379–88.PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Piñero-Sagredo E, Nunes S, de los Santos MJ, Celda B, Esteve V. NMR metabolic profile of human follicular fluid. NMR Biomed 2010;23(5):485–495.PubMedCrossRefPubMedCentralGoogle Scholar
  23. 23.
    Fan TWM. Metabolite profiling by one-and two-dimensional NMR analysis of complex mixtures. Prog Nucl Magn Reson Spectrosc. 1996;28(2):161–219.CrossRefGoogle Scholar
  24. 24.
    Hashemitabar M, Bahmanzadeh M, Mostafaie A, Orazizadeh M, Farimani M, Nikbakht R. A proteomic analysis of human follicular fluid: comparison between younger and older women with normal FSH levels. Int J Mol Sci. 2014;15(10):17518–40.PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Cordeiro FB, Montani DA, Pilau EJ, Gozzo FC, Fraietta R, Turco EGL. Ovarian environment aging: follicular fluid lipidomic and related metabolic pathways. J Assist Reprod Genet. 2018;35(8):1385–93.PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Sutton-McDowall ML, Gilchrist RB, Thompson JG. The pivotal role of glucose metabolism in determining oocyte developmental competence. Reproduction. 2010;139(4):685–95.PubMedCrossRefPubMedCentralGoogle Scholar
  27. 27.
    Cetica P, Pintos L, Dalvit G, Beconi M. Involvement of enzymes of amino acid metabolism and tricarboxylic acid cycle in bovine oocyte maturation in vitro. Reproduction. 2003;126(6):753–63.PubMedCrossRefPubMedCentralGoogle Scholar
  28. 28.
    Brackett BG, Zuelke KA. Analysis of factors involved in the in vitro production of bovine embryos. Theriogenology. 1993;39(1):43–64.CrossRefGoogle Scholar
  29. 29.
    Alvarez GM, Casiró S, Gutnisky C, Dalvit GC, Sutton-McDowall ML, Thompson JG, et al. Implications of glycolytic and pentose phosphate pathways on the oxidative status and active mitochondria of the porcine oocyte during IVM. Theriogenology. 2016;86(9):2096–106.PubMedCrossRefPubMedCentralGoogle Scholar
  30. 30.
    Alvarez GM, Dalvit GC, Cetica PD. Influence of the cumulus and gonadotropins on the metabolic profile of porcine cumulus–oocyte complexes during in vitro maturation. Reprod Domest Anim. 2012;47(5):856–64.PubMedCrossRefPubMedCentralGoogle Scholar
  31. 31.
    Cetica PD, Pintos LN, Dalvit GC, Beconi MT. Effect of lactate dehydrogenase activity and isoenzyme localization in bovine oocytes and utilization of oxidative substrates on in vitro maturation. Theriogenology. 1999;51(3):541–50.PubMedCrossRefPubMedCentralGoogle Scholar
  32. 32.
    Monniaux D. Driving folliculogenesis by the oocyte-somatic cell dialog: lessons from genetic models. Theriogenology. 2016;86(1):41–53.PubMedCrossRefPubMedCentralGoogle Scholar
  33. 33.
    Boland NI, Humpherson PG, Leese HJ, Gosden RG. Pattern of lactate production and steroidogenesis during growth and maturation of mouse ovarian follicles in vitro. Biol Reprod. 1993;48(4):798–806.PubMedCrossRefPubMedCentralGoogle Scholar
  34. 34.
    Gull I, Geva E, Lerner-Geva L, Lessing JB, Wolman I, Amit A. Anaerobic glycolysis: the metabolism of the preovulatory human oocyte. European Journal of Obstetrics & Gynecology and Reproductive Biology. 1999;85(2):225–8.CrossRefGoogle Scholar
  35. 35.
    Harlow CR, Winston RML, Margara RA, Hillier SG. Gonadotrophic control of human granulosa cell glycolysis. Hum Reprod. 1987;2(8):649–53.PubMedCrossRefPubMedCentralGoogle Scholar
  36. 36.
    Sutton ML, Gilchrist RB, Thompson JG. Effects of in-vivo and in-vitro environments on the metabolism of the cumulus–oocyte complex and its influence on oocyte developmental capacity. Hum Reprod Update. 2003;9(1):35–48.PubMedCrossRefPubMedCentralGoogle Scholar
  37. 37.
    Leese JH, Lenton EA. Glucose and lactate in human follicular fluid: concentrations and interrelationships. Hum Reprod. 1990;5:915–9.PubMedCrossRefPubMedCentralGoogle Scholar
  38. 38.
    Pacella L, Zander-Fox DL, Armstrong DT, Lane M. Women with reduced ovarian reserve or advanced maternal age have an altered follicular environment. Fertil Steril. 2012;98(4):986–94.PubMedCrossRefPubMedCentralGoogle Scholar
  39. 39.
    Jana SK, Dutta M, Joshi M, Srivastava S, Chakravarty B, Chaudhury K. 1H NMR based targeted metabolite profiling for understanding the complex relationship connecting oxidative stress with endometriosis. Biomed Res Int. 2013;2013.Google Scholar
  40. 40.
    Shalgi R, Kraicer PF, Soferman N. Gases and electrolytes of human follicular fluid. Reproduction. 1972;28(3):335–40.CrossRefGoogle Scholar
  41. 41.
    Dale B, Menezo Y, Cohen J, DiMatteo L, Wilding M. Intracellular pH regulation in the human oocyte. Human Reproduction (Oxford, England). 1998;13(4):964–70.CrossRefGoogle Scholar
  42. 42.
    Broekmans FJ, Mol BW, Habbema JDF, te Velde ER. Performance of basal follicle-stimulating hormone in the prediction of poor ovarian response and failure to become pregnant after in vitro fertilization: a meta-analysis. Fertil Steril. 2003;79(5):1091–100.PubMedCrossRefPubMedCentralGoogle Scholar
  43. 43.
    Broekmans FJ, Kwee J, Hendriks DJ, Mol BW, Lambalk CB. A systematic review of tests predicting ovarian reserve and IVF outcome. Hum Reprod Update. 2006;12(6):685–718.PubMedCrossRefPubMedCentralGoogle Scholar
  44. 44.
    Jirge PR. Ovarian reserve tests. J Hum Reprod Sci. 2011;4(3):108–13.PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Eyupoglu ND, Guzelce EC, Acikgoz A, Uyanik E, Bjørndal B, Berge RK, et al. Circulating gut microbiota metabolite trimethylamine N-oxide (TMAO) and oral contraceptive use in polycystic ovary syndrome. Clin Endocrinol. 2019;91(6):810–5.CrossRefGoogle Scholar
  46. 46.
    Li P, Zhong C, Li S, Sun T, Huang H, Chen X, et al. Plasma concentration of trimethylamine-N-oxide and risk of gestational diabetes mellitus. Am J Clin Nutr. 2018;108(3):603–10.PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Rexidamu M, Li H, Jin H, Huang J. Serum levels of trimethylamine-N-oxide in patients with ischemic stroke. Biosci Rep. 2019;39(6):BSR20190515.PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Subramaniam S, Fletcher C. Trimethylamine N-oxide: breathe new life. Br J Pharmacol. 2018;175(8):1344–53.PubMedCrossRefPubMedCentralGoogle Scholar
  49. 49.
    Griffin LE, Djuric Z, Angiletta CJ, Mitchell CM, Baugh ME, Davy KP, et al. A Mediterranean diet does not alter plasma trimethylamine N-oxide concentrations in healthy adults at risk for colon cancer. Food Funct. 2019;10(4):2138–47.PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2020

Authors and Affiliations

  • B. Dogan
    • 1
    • 2
  • A. Karaer
    • 1
    • 3
    Email author
  • G. Tuncay
    • 1
    • 3
  • N. Tecellioglu
    • 1
    • 3
  • A. Mumcu
    • 1
    • 4
  1. 1.Reproductive Sciences & Advanced Bioinformatics Application & Research CenterInonu UniversityMalatyaTurkey
  2. 2.Department of Biomedical Engineering, School of EngineeringInonu UniversityMalatyaTurkey
  3. 3.Department of Obstetrics and Gynecology, Division of Reproductive Endocrinology and InfertilityInonu University, School of MedicineMalatyaTurkey
  4. 4.Laboratory of NMR, Scientific and Technological Research CenterInonu UniversityMalatyaTurkey

Personalised recommendations