Journal of Assisted Reproduction and Genetics

, Volume 36, Issue 9, pp 1781–1785 | Cite as

Easing US restrictions on mitochondrial replacement therapy would protect research interests but grease the slippery slope

  • David L. KeefeEmail author


Mitochondria are essential organelles found in most eukaryotic cells [1, 2]. They play important roles not only in the production of cellular energy but also in metabolic [3], immune [4], neural [5], and psychiatric function [6, 7], as well as aging [2, 8]. Mitochondria originated billions of years ago as separate bacteria-like organisms, and over the intervening millennia developed symbiotic relationships with our eukaryotic ancestors. The relationship between mitochondria and eukaryotic cells has proven mutually beneficial, though at times precarious [9, 10]. Concordant with their origin as separate organisms, mitochondria contain their own DNA, called mitochondrial DNA [11] (mtDNA). mtDNA retains many features of bacterial DNA, including exquisite susceptibility to damage, rapid mutagenesis, and limited repair capacity.

mtDNA transmits exclusively via the maternal germ line. Oogenesis provides critical quality control to ensure the fittest mtDNA cross into the next...


Mitochondrial replacement therapy 



  1. 1.
    Alston CL, Rocha MC, Lax NZ, Turnbull DM, Taylor RW. The genetics and pathology of mitochondrial disease. J Pathol. 2017;241(2):236–50.CrossRefGoogle Scholar
  2. 2.
    Wallace DC. Genetics: mitochondrial DNA in evolution and disease. Nature. 2016;535(7613):498–500.CrossRefGoogle Scholar
  3. 3.
    Ridler C. Obesity: inheritance via mitochondria. Nat Rev Endocrinol. 2016;12(9):497.CrossRefGoogle Scholar
  4. 4.
    West AP, Shadel GS. Mitochondrial DNA in innate immune responses and inflammatory pathology. Nat Rev Immunol. 2017;17(6):363–75.CrossRefGoogle Scholar
  5. 5.
    Burte F, et al. Disturbed mitochondrial dynamics and neurodegenerative disorders. Nat Rev Neurol. 2015;11(1):11–24.CrossRefGoogle Scholar
  6. 6.
    Wallace DC, Chalkia D, Singh LN. Mitochondrial etiology of psychiatric disorders-reply. JAMA Psychiatry. 2018;75(5):527–8.CrossRefGoogle Scholar
  7. 7.
    Pei L, Wallace DC. Mitochondrial etiology of neuropsychiatric disorders. Biol Psychiatry. 2018;83(9):722–30.CrossRefGoogle Scholar
  8. 8.
    Kubben N, Misteli T. Shared molecular and cellular mechanisms of premature ageing and ageing-associated diseases. Nat Rev Mol Cell Biol. 2017;18(10):595–609.CrossRefGoogle Scholar
  9. 9.
    Stewart JB, Chinnery PF. The dynamics of mitochondrial DNA heteroplasmy: implications for human health and disease. Nat Rev Genet. 2015;16(9):530–42.CrossRefGoogle Scholar
  10. 10.
    Morava E, Kozicz T, Wallace DC. The phenotype modifier: is the mitochondrial DNA background responsible for individual differences in disease severity. J Inherit Metab Dis. 2019;42(1):3–4.CrossRefGoogle Scholar
  11. 11.
    Keefe DL, Niven-Fairchild T, Powell S, Buradagunta S. Mitochondrial deoxyribonucleic acid deletions in oocytes and reproductive aging in women. Fertil Steril. 1995;64(3):577–83.CrossRefGoogle Scholar
  12. 12.
    Gorman GS, Chinnery PF, DiMauro S, Hirano M, Koga Y, McFarland R, et al. Mitochondrial diseases. Nat Rev Dis Primers. 2016;2:16080.CrossRefGoogle Scholar
  13. 13.
    Baumann K. Development: eliminating paternal mitochondria. Nat Rev Mol Cell Biol. 2016;17(8):464.CrossRefGoogle Scholar
  14. 14.
    Trimarchi JR, Liu L, Porterfield DM, Smith PJS, Keefe DL. Oxidative phosphorylation-dependent and -independent oxygen consumption by individual preimplantation mouse embryos. Biol Reprod. 2000;62(6):1866–74.CrossRefGoogle Scholar
  15. 15.
    Porterfield DM, Trimarchi JR, Keefe DL, Smith PJS. Characterization of oxygen and calcium fluxes from early mouse embryos and oocytes. Biol Bull. 1998;195(2):208–9.CrossRefGoogle Scholar
  16. 16.
    Wallace DC. Mitochondrial genetic medicine. Nat Genet. 2018;50(12):1642–9.CrossRefGoogle Scholar
  17. 17.
    Liu L, Keefe DL. Nuclear transfer methods to study aging. Methods Mol Biol. 2007;371:191–207.CrossRefGoogle Scholar
  18. 18.
    Liu L, Oldenbourg R, Trimarchi JR, Keefe DL. A reliable, noninvasive technique for spindle imaging and enucleation of mammalian oocytes. Nat Biotechnol. 2000;18(2):223–5.CrossRefGoogle Scholar
  19. 19.
    Hyslop LA, Blakeley P, Craven L, Richardson J, Fogarty NME, Fragouli E, et al. Towards clinical application of pronuclear transfer to prevent mitochondrial DNA disease. Nature. 2016;534(7607):383–6.CrossRefGoogle Scholar
  20. 20.
    Adashi EY, Cohen IG. Mitochondrial replacement therapy: unmade in the USA. JAMA. 2017;317(6):574–5.CrossRefGoogle Scholar
  21. 21.
    Adashi EY, Cohen IG. Mitochondrial replacement therapy: born in the USA: the untold story of a conceptual breakthrough. Am J Obstet Gynecol. 2017;217(5):561–3.CrossRefGoogle Scholar
  22. 22.
    Adashi EY, Cohen IG. Preventing mitochondrial disease: a path forward. Obstet Gynecol. 2018;131(3):553–6.CrossRefGoogle Scholar
  23. 23.
    McCarthy M. Scientists call for moratorium on clinical use of human germline editing. BMJ. 2015;351:h6603.CrossRefGoogle Scholar
  24. 24.
    Treff NR, Campos J, Tao X, Levy B, Ferry KM, Scott RT Jr. Blastocyst preimplantation genetic diagnosis (PGD) of a mitochondrial DNA disorder. Fertil Steril. 2012;98(5):1236–40.CrossRefGoogle Scholar
  25. 25.
    Paull D, Emmanuele V, Weiss KA, Treff N, Stewart L, Hua H, et al. Nuclear genome transfer in human oocytes eliminates mitochondrial DNA variants. Nature. 2013;493(7434):632–7.CrossRefGoogle Scholar
  26. 26.
    Kang E, Wu J, Gutierrez NM, Koski A, Tippner-Hedges R, Agaronyan K, et al. Mitochondrial replacement in human oocytes carrying pathogenic mitochondrial DNA mutations. Nature. 2016;540(7632):270–5.CrossRefGoogle Scholar
  27. 27.
    Tachibana M, Sparman M, Sritanaudomchai H, Ma H, Clepper L, Woodward J, et al. Mitochondrial gene replacement in primate offspring and embryonic stem cells. Nature. 2009;461(7262):367–72.CrossRefGoogle Scholar
  28. 28.
    Adashi EY, Caplan AL, Capron A, Chapman AR, Cho M, Clayton EW, et al. In support of mitochondrial replacement therapy. Nat Med. 2019;25(6):870–1.CrossRefGoogle Scholar
  29. 29.
    Sauer MV, Kavic SM. Oocyte and embryo donation 2006: reviewing two decades of innovation and controversy. Reprod BioMed Online. 2006;12(2):153–62.CrossRefGoogle Scholar
  30. 30.
    Conomos MP, Reiner AP, Weir BS, Thornton TA. Model-free estimation of recent genetic relatedness. Am J Hum Genet. 2016;98(1):127–48.CrossRefGoogle Scholar
  31. 31.
    Roshyara NR, Scholz M. Impact of genetic similarity on imputation accuracy. BMC Genet. 2015;16:90.CrossRefGoogle Scholar
  32. 32.
    Morris AP. Transethnic meta-analysis of genomewide association studies. Genet Epidemiol. 2011;35(8):809–22.CrossRefGoogle Scholar
  33. 33.
    Gorman GS, Grady JP, Turnbull DM. Mitochondrial donation--how many women could benefit? N Engl J Med. 2015;372(9):885–7.CrossRefGoogle Scholar
  34. 34.
    Wolf DP, Hayama T, Mitalipov S. Mitochondrial genome inheritance and replacement in the human germline. EMBO J. 2017;36(15):2177–81.CrossRefGoogle Scholar
  35. 35.
    Zhang J, Liu H, Luo S, Lu Z, Chávez-Badiola A, Liu Z, et al. Live birth derived from oocyte spindle transfer to prevent mitochondrial disease. Reprod BioMed Online. 2017;34(4):361–8.CrossRefGoogle Scholar
  36. 36.
    Chalkia D, Singh LN, Leipzig J, Lvova M, Derbeneva O, Lakatos A, et al. Association between mitochondrial DNA haplogroup variation and autism spectrum disorders. JAMA Psychiatry. 2017;74(11):1161–8.CrossRefGoogle Scholar
  37. 37.
    Jeon H, Lee J, Lee S, Kang SK, Park SJ, Yoo SM, et al. Extracellular vesicles from KSHV-infected cells stimulate antiviral immune response through mitochondrial DNA. Front Immunol. 2019;10:876.CrossRefGoogle Scholar
  38. 38.
    Nguyen T, Jeyakumar A. Genetic susceptibility to aminoglycoside ototoxicity. Int J Pediatr Otorhinolaryngol. 2019;120:15–9.CrossRefGoogle Scholar
  39. 39.
    Govindaraj P, Rani B, Sundaravadivel P, Vanniarajan A, Indumathi KP, Khan NA, et al. Mitochondrial genome variations in idiopathic dilated cardiomyopathy. Mitochondrion. 2019.Google Scholar
  40. 40.
    Sunderam S, Kissin DM, Zhang Y, Folger SG, Boulet SL, Warner L, et al. Assisted reproductive technology surveillance - United States, 2016. MMWR Surveill Summ. 2019;68(4):1–23.CrossRefGoogle Scholar
  41. 41.
    Harton GL, Munné S, Surrey M, Grifo J, Kaplan B, McCulloh DH, et al. Diminished effect of maternal age on implantation after preimplantation genetic diagnosis with array comparative genomic hybridization. Fertil Steril. 2013;100(6):1695–703.CrossRefGoogle Scholar
  42. 42.
    Felicio LS, Nelson JF, Gosden RG, Finch CE. Restoration of ovulatory cycles by young ovarian grafts in aging mice: potentiation by long-term ovariectomy decreases with age. Proc Natl Acad Sci U S A. 1983;80(19):6076–80.CrossRefGoogle Scholar
  43. 43.
    Liu L, Keefe DL. Defective cohesin is associated with age-dependent misaligned chromosomes in oocytes. Reprod BioMed Online. 2008;16(1):103–12.CrossRefGoogle Scholar
  44. 44.
    Wang S, Hassold T, Hunt P, White MA, Zickler D, Kleckner N, et al. Inefficient crossover maturation underlies elevated aneuploidy in human female meiosis. Cell. 2017;168(6):977–989.e17.CrossRefGoogle Scholar
  45. 45.
    Keefe DL. Telomeres and genomic instability during early development. Eur J Med Genet. 2019.
  46. 46.
    Lin W, Titus S, Moy F, Ginsburg ES, Oktay K. Ovarian aging in women with BRCA germline mutations. J Clin Endocrinol Metab. 2017;102(10):3839–47.CrossRefGoogle Scholar
  47. 47.
    Leese HJ, Guerif F, Allgar V, Brison DR, Lundin K, Sturmey RG. Biological optimization, the Goldilocks principle, and how much is lagom in the preimplantation embryo. Mol Reprod Dev. 2016;83(9):748–54.CrossRefGoogle Scholar
  48. 48.
    Krisher RL, Prather RS. A role for the Warburg effect in preimplantation embryo development: metabolic modification to support rapid cell proliferation. Mol Reprod Dev. 2012;79(5):311–20.CrossRefGoogle Scholar
  49. 49.
    Scantland S, Tessaro I, Macabelli CH, Macaulay AD, Cagnone G, Fournier É, et al. The adenosine salvage pathway as an alternative to mitochondrial production of ATP in maturing mammalian oocytes. Biol Reprod. 2014;91(3):75.CrossRefGoogle Scholar
  50. 50.
    Liu L, Keefe DL. Nuclear origin of aging-associated meiotic defects in senescence-accelerated mice. Biol Reprod. 2004;71(5):1724–9.CrossRefGoogle Scholar
  51. 51.
    Wai T, Ao A, Zhang X, Cyr D, Dufort D, Shoubridge EA. The role of mitochondrial DNA copy number in mammalian fertility. Biol Reprod. 2010;83(1):52–62.CrossRefGoogle Scholar
  52. 52.
    Ludwig LS, Lareau CA, Ulirsch JC, Christian E, Muus C, Li LH, et al. Lineage tracing in humans enabled by mitochondrial mutations and single-cell genomics. Cell. 2019;176(6):1325–1339.e22.CrossRefGoogle Scholar
  53. 53.
    Sharpley MS, Marciniak C, Eckel-Mahan K, McManus M, Crimi M, Waymire K, et al. Heteroplasmy of mouse mtDNA is genetically unstable and results in altered behavior and cognition. Cell. 2012;151(2):333–43.CrossRefGoogle Scholar
  54. 54.
    Chen SH, Pascale C, Jackson M, Szvetecz MA, Cohen J. A limited survey-based uncontrolled follow-up study of children born after ooplasmic transplantation in a single centre. Reprod BioMed Online. 2016;33(6):737–44.CrossRefGoogle Scholar
  55. 55.
    Barritt J, et al. Cytoplasmic transfer in assisted reproduction. Hum Reprod Update. 2001;7(4):428–35.CrossRefGoogle Scholar
  56. 56.
    Woods DC, Tilly JL. Autologous germline mitochondrial energy transfer (AUGMENT) in human assisted reproduction. Semin Reprod Med. 2015;33(6):410–21.CrossRefGoogle Scholar
  57. 57.
    Couzin-Frankel J. Eggs’ power plants energize new IVF debate. Reproductive Medicine. 2015.
  58. 58.
    Weintraub K. Turmoil at troubled fertility company Ovascience. In: MIT Technology Review. Cambridge: MIT Press; 2016.Google Scholar
  59. 59.
    Meiling B. Once a multibillion dollar company, OvaScience ends a pennystock vehicle for Millendo’s reverse merger. Endpoints News; 2018.Google Scholar
  60. 60.
    Labarta E, de los Santos MJ, Herraiz S, Escribá MJ, Marzal A, Buigues A, et al. Autologous mitochondrial transfer as a complementary technique to intracytoplasmic sperm injection to improve embryo quality in patients undergoing in vitro fertilization-a randomized pilot study. Fertil Steril. 2019;111(1):86–96.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Obstetrics and GynecologyNYU Langone HealthNew YorkUSA

Personalised recommendations