Sperm chromatin condensation defects, but neither DNA fragmentation nor aneuploidy, are an independent predictor of clinical pregnancy after intracytoplasmic sperm injection

  • C. Bichara
  • B. Berby
  • A. Rives
  • F. Jumeau
  • M. Letailleur
  • V. Setif
  • L. Sibert
  • C. Rondanino
  • Nathalie RivesEmail author
Gamete Biology



The impact of sperm DNA damage on intracytoplasmic sperm injection (ICSI) outcomes remains controversial. The purpose of the study was to evaluate the prognostic value of several types of sperm nuclear damage on ICSI clinical pregnancy.


Our retrospective study included a total of 132 couples who consulted for male or mixed-factor infertility that benefited from ICSI cycles from January 2006 to December 2015. All infertile males presented at least one conventional semen parameter alteration. Sperm nuclear damage was assessed using the Motile Sperm Organelle Morphological Examination for sperm head relative vacuolar area (RVA), aniline blue staining for chromatin condensation, terminal deoxynucleotidyl transferase dUTP nick-end labeling for DNA fragmentation, and fluorescence in situ hybridization for aneuploidy.


Infertile males who achieved pregnancy after ICSI had fewer chromatin condensation defects than did males who did not achieve any pregnancy (15.8 ± 12.0% vs. 11.4 ± 7.9%, respectively, P = 0.0242), which remained significant in multivariate regression analysis (RR = 0.40 [0.18 to 0.86], P = 0.02). RVA, DNA fragmentation, and aneuploidy were not predictive factors of ICSI outcomes. The pregnancy rate was significantly decreased by number of progressive motile spermatozoa with normal morphology after migration (P = 0.04). In female partners, 17β estradiol of less than 2000 pg/mL on the day of ovulation induction significantly reduced the occurrence of clinical pregnancy (P = 0.04).


Sperm chromatin condensation defects were more frequently observed in couples with ICSI failure and should be considered a negative predictive factor for the occurrence of clinical pregnancy.


ICSI outcomes MSOME Sperm aneuploidy Sperm condensation Sperm DNA fragmentation 



This work was supported by the Normandy Rouen University Hospital.

Author contributions

Cynthia Bichara contributed in data collection, analysis, and interpretation, statistical analysis, and writing of the manuscript; Benoit Berby and Aurélie Rives contributed in collection of biological and clinical data; F. Jumeau contributed in data analysis and revision of the manuscript; Véronique Sétif contributed in execution of experiments; M. Letailleur contributed in female patient recruitment, clinical examination, and ART procedure; Louis Sibert contributed in male patient recruitment and clinical examination; Nathalie Rives contributed in design and supervision of the study, funding support, patient recruitment, clinical data, and writing of the manuscript. All the authors approved the final version of the manuscript.


No specific funding was sought for the study.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    Rubino P, Vigano P, Luddi A, Piomboni P. The ICSI procedure from past to future: a systematic review of the more controversial aspects. Hum Reprod Update. 2016;22:194–227.Google Scholar
  2. 2.
    Agarwal A, Said TM. Role of sperm chromatin abnormalities and DNA damage in male infertility. Hum Reprod Update. 2003;9:331–45.CrossRefGoogle Scholar
  3. 3.
    Bakos HW, Thompson JG, Feil D, Lane M. Sperm DNA damage is associated with assisted reproductive technology pregnancy. Int J Androl. 2008;31:518–26.CrossRefGoogle Scholar
  4. 4.
    Pinborg A, Gaarslev C, Hougaard CO, Andersen AN, Andersen PK, Andersen PK, et al. Influence of female bodyweight on IVF outcome: a longitudinal multicentre cohort study of 487 infertile couples. Reprod BioMed Online. 2011;23:490–9.CrossRefGoogle Scholar
  5. 5.
    Andersen AN, Witjes H, Gordon K, Mannaerts B. Predictive factors of ovarian response and clinical outcome after IVF/ICSI following a rFSH/GnRH antagonist protocol with or without oral contraceptive pre-treatment. Hum Reprod. 2011;26:3413–23.CrossRefGoogle Scholar
  6. 6.
    Meseguer M, Santiso R, Garrido N, Garcia-Herrero S, Remohi J, Fernandez JL. Effect of sperm DNA fragmentation on pregnancy outcome depends on oocyte quality. Fertil Steril. 2011;95:124–8.CrossRefGoogle Scholar
  7. 7.
    Vural B, Sofuoglu K, Caliskan E, Delikara N, Aksoy E, Uslu H, et al. Predictors of intracytoplasmic sperm injection (ICSI) outcome in couples with and without male factor infertility. Clin Exp Obstet Gynecol. 2005;32:158–62.Google Scholar
  8. 8.
    Kaarouch I, Bouamoud N, Louanjli N, Madkour A, Copin H, Benkhalifa M, et al. Impact of sperm genome decay on day-3 embryo chromosomal abnormalities from advanced-maternal-age patients. Mol Reprod Dev. 2015;82:809–19.CrossRefGoogle Scholar
  9. 9.
    Erenpreiss J, Spano M, Erenpreisa J, Bungum M, Giwercman A. Sperm chromatin structure and male fertility: biological and clinical aspects. Asian J Androl. 2006;8:11–29.CrossRefGoogle Scholar
  10. 10.
    Spano M, Seli E, Bizzaro D, Manicardi GC, Sakkas D. The significance of sperm nuclear DNA strand breaks on reproductive outcome. Curr Opin Obstet Gynecol. 2005;17:255–60.CrossRefGoogle Scholar
  11. 11.
    Seli E, Sakkas D. Spermatozoal nuclear determinants of reproductive outcome: implications for ART. Hum Reprod Update. 2005;11:337–49.CrossRefGoogle Scholar
  12. 12.
    O'Brien J, Zini A. Sperm DNA integrity and male infertility. Urology. 2005;65:16–22.CrossRefGoogle Scholar
  13. 13.
    Gandini L, Lombardo F, Paoli D, Caruso F, Eleuteri P, Leter G, et al. Full-term pregnancies achieved with ICSI despite high levels of sperm chromatin damage. Hum Reprod. 2004;19:1409–17.CrossRefGoogle Scholar
  14. 14.
    Morris ID, Ilott S, Dixon L, Brison DR. The spectrum of DNA damage in human sperm assessed by single cell gel electrophoresis (comet assay) and its relationship to fertilization and embryo development. Hum Reprod. 2002;17:990–8.CrossRefGoogle Scholar
  15. 15.
    Henkel R, Kierspel E, Hajimohammad M, Stalf T, Hoogendijk C, Mehnert C, et al. DNA fragmentation of spermatozoa and assisted reproduction technology. Reprod BioMed Online. 2003;7:477–84.CrossRefGoogle Scholar
  16. 16.
    Hammadeh ME, al-Hasani S, Stieber M, Rosenbaum P, Kupker D, Diedrich K, et al. The effect of chromatin condensation (aniline blue staining) and morphology (strict criteria) of human spermatozoa on fertilization, cleavage and pregnancy rates in an intracytoplasmic sperm injection programme. Hum Reprod. 1996;11:2468–71.CrossRefGoogle Scholar
  17. 17.
    Saleh RA, Agarwal A, Nada EA, El-Tonsy MH, Sharma RK, Meyer A, et al. Negative effects of increased sperm DNA damage in relation to seminal oxidative stress in men with idiopathic and male factor infertility. Fertil Steril. 2003;79(Suppl 3):1597–605.CrossRefGoogle Scholar
  18. 18.
    Lewis SE, Aitken RJ. DNA damage to spermatozoa has impacts on fertilization and pregnancy. Cell Tissue Res. 2005;322:33–41.CrossRefGoogle Scholar
  19. 19.
    Sun JG, Jurisicova A, Casper RF. Detection of deoxyribonucleic acid fragmentation in human sperm: correlation with fertilization in vitro. Biol Reprod. 1997;56:602–7.CrossRefGoogle Scholar
  20. 20.
    Lopes S, Sun JG, Jurisicova A, Meriano J, Casper RF. Sperm deoxyribonucleic acid fragmentation is increased in poor-quality semen samples and correlates with failed fertilization in intracytoplasmic sperm injection. Fertil Steril. 1998;69:528–32.CrossRefGoogle Scholar
  21. 21.
    Benchaib M, Braun V, Lornage J, Hadj S, Salle B, Lejeune H, et al. Sperm DNA fragmentation decreases the pregnancy rate in an assisted reproductive technique. Hum Reprod. 2003;18:1023–8.CrossRefGoogle Scholar
  22. 22.
    Huang CC, Lin DP, Tsao HM, Cheng TC, Liu CH, Lee MS. Sperm DNA fragmentation negatively correlates with velocity and fertilization rates but might not affect pregnancy rates. Fertil Steril. 2005;84:130–40.CrossRefGoogle Scholar
  23. 23.
    Avendaño C, Franchi A, Duran H, Oehninger S. DNA fragmentation of normal spermatozoa negatively impacts embryo quality and intracytoplasmic sperm injection outcome. Fertil Steril. 2010;94(2):549–57.CrossRefGoogle Scholar
  24. 24.
    Colaco S, Sakkas D. Paternal factors contributing to embryo quality. J Assist Reprod Genet. 2018 Sep 11;35:1953–68.
  25. 25.
    Berkovitz A, Eltes F, Ellenbogen A, Peer S, Feldberg D, Bartoov B. Does the presence of nuclear vacuoles in human sperm selected for ICSI affect pregnancy outcome? Hum Reprod. 2006;21:1787–90.CrossRefGoogle Scholar
  26. 26.
    Vanderzwalmen P, Hiemer A, Rubner P, Bach M, Neyer A, Stecher A, et al. Blastocyst development after sperm selection at high magnification is associated with size and number of nuclear vacuoles. Reprod BioMed Online. 2008;17:617–27.CrossRefGoogle Scholar
  27. 27.
    Goswami G, Sharma M, Jugga D, Gouri DM. Can intracytoplasmic morphologically selected spermatozoa injection be used as first choice of treatment for severe male factor infertility patients? J Hum Reprod Sci. 2018;11:40–4.CrossRefGoogle Scholar
  28. 28.
    Gaspard O, Vanderzwalmen P, Wirleitner B, Ravet S, Wenders F, Eichel V, et al. Impact of high magnification sperm selection on neonatal outcomes: a retrospective study. J Assist Reprod Genet. 2018;35:1113–21.CrossRefGoogle Scholar
  29. 29.
    Kacem O, Sifer C, Barraud-Lange V, Ducot B, De Ziegler D, Poirot C, et al. Sperm nuclear vacuoles, as assessed by motile sperm organellar morphological examination, are mostly of acrosomal origin. Reprod BioMed Online. 2010;20:132–7.CrossRefGoogle Scholar
  30. 30.
    Franco JG Jr, Baruffi RL, Mauri AL, Petersen CG, Oliveira JB, Vagnini L, et al. Significance of large nuclear vacuoles in human spermatozoa: implications for ICSI. Reprod BioMed Online. 2008;17:42–5.CrossRefGoogle Scholar
  31. 31.
    Perdrix A, Travers A, Chelli MH, Escalier D, Do Rego JL, Milazzo JP, et al. Assessment of acrosome and nuclear abnormalities in human spermatozoa with large vacuoles. Hum Reprod. 2011;26:47–58.CrossRefGoogle Scholar
  32. 32.
    Perdrix A, Rives N. Motile sperm organelle morphology examination (MSOME) and sperm head vacuoles: state of the art in 2013. Hum Reprod Update. 2013;19:527–41.CrossRefGoogle Scholar
  33. 33.
    Collins JA, Barnhart KT, Schlegel PN. Do sperm DNA integrity tests predict pregnancy with in vitro fertilization? Fertil Steril. 2008;89:823–31.CrossRefGoogle Scholar
  34. 34.
    Bungum M, Humaidan P, Spano M, Jepson K, Bungum L, Giwercman A. The predictive value of sperm chromatin structure assay (SCSA) parameters for the outcome of intrauterine insemination, IVF and ICSI. Hum Reprod. 2004;19(6):1401–8.CrossRefGoogle Scholar
  35. 35.
    Larson-Cook KL, Brannian JD, Hansen KA, Kasperson KM, Aamold ET, Evenson DP. Relationship between the outcomes of assisted reproductive techniques and sperm DNA fragmentation as measured by the sperm chromatin structure assay. Fertil Steril. 2003;80:895–902.CrossRefGoogle Scholar
  36. 36.
    Sakkas D, Alvarez JG. Sperm DNA fragmentation: mechanisms of origin, impact on reproductive outcome, and analysis. Fertil Steril. 2010;93:1027–36.CrossRefGoogle Scholar
  37. 37.
    Zhao J, Zhang Q, Wang Y, Li Y. Whether sperm deoxyribonucleic acid fragmentation has an effect on pregnancy and miscarriage after in vitro fertilization/intracytoplasmic sperm injection: a systematic review and meta-analysis. Fertil Steril. 2014;102:998–1005.e8.CrossRefGoogle Scholar
  38. 38.
    Borini A, Tarozzi N, Bizzaro D, Bonu MA, Fava L, Flamigni C, et al. Sperm DNA fragmentation: paternal effect on early post-implantation embryo development in ART. Hum Reprod. 2006;21:2876–81.CrossRefGoogle Scholar
  39. 39.
    Irez T, Sahmay S, Ocal P, Goymen A, Senol H, Kaleli S, et al. Investigation of the association between the outcomes of sperm chromatin condensation and decondensation tests, and assisted reproduction techniques. Andrologia. 2015;47:438–47.CrossRefGoogle Scholar
  40. 40.
    Li Z, Wang L, Cai J, Huang H. Correlation of sperm DNA damage with IVF and ICSI outcomes: a systematic review and meta-analysis. J Assist Reprod Genet. 2006;23:367–76.CrossRefGoogle Scholar
  41. 41.
    Zini A, Sigman M. Are tests of sperm DNA damage clinically useful? Pros and cons. J Androl. 2009;30:219–29.CrossRefGoogle Scholar
  42. 42.
    Zini A. Are sperm chromatin and DNA defects relevant in the clinic? Syst Biol Reprod Med. 2011;57:78–85.CrossRefGoogle Scholar
  43. 43.
    Practice Committee of the American Society for Reproductive Medicine. The clinical utility of sperm DNA integrity testing: a guideline. Fertil Steril. 2013;99:673–7.CrossRefGoogle Scholar
  44. 44.
    Agarwal A, Allamaneni SS. Sperm DNA damage assessment: a test whose time has come. Fertil Steril. 2005;84:850–3.CrossRefGoogle Scholar
  45. 45.
    World Health Organization. WHO laboratory manual for the examination and processing of human semen. Geneva: WHO Press; 2010.Google Scholar
  46. 46.
    Auger J, Eustache F, Andersen AG, Irvine DS, Jorgensen N, Skakkebaek NE, et al. Sperm morphological defects related to environment, lifestyle and medical history of 1001 male partners of pregnant women from four European cities. Hum Reprod. 2001;16:2710–7.CrossRefGoogle Scholar
  47. 47.
    Perdrix A, Saidi R, Menard JF, Gruel E, Milazzo JP, Macé B, et al. Relationship between conventional sperm parameters and motile sperm organelle morphology examination (MSOME). Int J Androl. 2012;35:491–8.CrossRefGoogle Scholar
  48. 48.
    Alpha Scientists in Reproductive Medicine and ESHRE Special Interest Group of Embryology. The Istanbul consensus workshop on embryo assessment: proceedings of an expert meeting. Hum Reprod. 2011;26:1270–83.CrossRefGoogle Scholar
  49. 49.
    Hammadeh ME, Stieber M, Haidl G, Schmidt W. Association between sperm cell chromatin condensation, morphology based on strict criteria, and fertilization, cleavage and pregnancy rates in an IVF program. Andrologia. 1998;30(1):29–35.CrossRefGoogle Scholar
  50. 50.
    Avendano C, Franchi A, Taylor S, Morshedi M, Bocca S, Oehninger S. Fragmentation of DNA in morphologically normal human spermatozoa. Fertil Steril. 2009;91:1077–84.CrossRefGoogle Scholar
  51. 51.
    Cohen-Bacrie P, Belloc S, Menezo YJ, Clement P, Hamidi J, Benkhalifa M. Correlation between DNA damage and sperm parameters: a prospective study of 1,633 patients. Fertil Steril. 2009;91:1801–5.CrossRefGoogle Scholar
  52. 52.
    Belloc S, Benkhalifa M, Cohen-Bacrie M, Dalleac A, Chahine H, Amar E, et al. Which isolated sperm abnormality is most related to sperm DNA damage in men presenting for infertility evaluation. J Assist Reprod Genet. 2014;31:527–32.CrossRefGoogle Scholar
  53. 53.
    Rives N, Saint Clair A, Mazurier S, Sibert L, Simeon N, Joly G, et al. Relationship between clinical phenotype, semen parameters and aneuploidy frequency in sperm nuclei of 50 infertile males. Hum Genet. 1999;105:266–72.CrossRefGoogle Scholar
  54. 54.
    Sadeghi MR, Hodjat M, Lakpour N, Arefi S, Amirjannati N, Modarresi T, et al. Effects of sperm chromatin integrity on fertilization rate and embryo quality following intracytoplasmic sperm injection. Avicenna J Med Biotechnol. 2009;1:173–80.Google Scholar
  55. 55.
    Filatov MV, Semenova EV, Vorobeva OA, Leont'eva OA, Drobchenko EA. Relationship between abnormal sperm chromatin packing and IVF results. Mol Hum Reprod. 1999;5:825–30.CrossRefGoogle Scholar
  56. 56.
    Hofmann N, Hilscher B. Use of aniline blue to assess chromatin condensation in morphologically normal spermatozoa in normal and infertile men. Hum Reprod. 1991;6:979–82.CrossRefGoogle Scholar
  57. 57.
    Evenson DP, Jost LK, Marshall D, Zinaman MJ, Clegg E, Purvis K, et al. Utility of the sperm chromatin structure assay as a diagnostic and prognostic tool in the human fertility clinic. Hum Reprod. 1999;14:1039–49.CrossRefGoogle Scholar
  58. 58.
    Depa-Martynow M, Kempisty B, Lianeri M, Jagodzinski PP, Jedrzejczak P. Association between fertilin beta, protamines 1 and 2 and spermatid-specific linker histone H1-like protein mRNA levels, fertilization ability of human spermatozoa, and quality of preimplantation embryos. Folia Histochem Cytobiol. 2007;45(Suppl 1):S79–85.Google Scholar
  59. 59.
    Singh NP, Muller CH, Berger RE. Effects of age on DNA double-strand breaks and apoptosis in human sperm. Fertil Steril. 2003;80:1420–30.CrossRefGoogle Scholar
  60. 60.
    Schmid TE, Eskenazi B, Baumgartner A, Marchetti F, Young S, Weldon R, et al. The effects of male age on sperm DNA damage in healthy non-smokers. Hum Reprod. 2007;22:180–7.CrossRefGoogle Scholar
  61. 61.
    Aitken RJ, De Iuliis GN, McLachlan RI. Biological and clinical significance of DNA damage in the male germ line. Int J Androl. 2009;32:46–56.CrossRefGoogle Scholar
  62. 62.
    Yatsenko AN, Turek PJ. Reproductive genetics and the aging male. J Assist Reprod Genet. 2018;35:933–41.CrossRefGoogle Scholar
  63. 63.
    Belloc S, Hazout A, Zini A, Merviel P, Cabry R, Chahine H, et al. How to overcome male infertility after 40: influence of paternal age on fertility. Maturitas. 2014;78:22–9.CrossRefGoogle Scholar
  64. 64.
    Kaarouch I, Bouamoud N, Madkour A, Louanjli N, Saadani B, Assou S, et al. Paternal age: negative impact on sperm genome decays and IVF outcomes after 40 years. Mol Reprod Dev. 2018;85:271–80.CrossRefGoogle Scholar
  65. 65.
    Belloc S, Benkhalifa M, Junca AM, Dumont M, Bacrie PC, Ménézo Y. Paternal age and sperm DNA decay: discrepancy between chromomycin and aniline blue staining. Reprod BioMed Online. 2009;19:264–9.CrossRefGoogle Scholar
  66. 66.
    Moskovtsev SI, Willis J, Mullen JB. Age-related decline in sperm deoxyribonucleic acid integrity in patients evaluated for male infertility. Fertil Steril. 2006;85:496–9.CrossRefGoogle Scholar
  67. 67.
    Bungum M, Humaidan P, Axmon A, Spano M, Bungum L, Erenpreiss J, et al. Sperm DNA integrity assessment in prediction of assisted reproduction technology outcome. Hum Reprod. 2007;22:174–9.CrossRefGoogle Scholar
  68. 68.
    Bungum M, Bungum L, Lynch KF, Wedlund L, Humaidan P, Giwercman A. Spermatozoa DNA damage measured by sperm chromatin structure assay (SCSA) and birth characteristics in children conceived by IVF and ICSI. Int J Androl. 2012;35:485–90.CrossRefGoogle Scholar
  69. 69.
    Foroozanfard F, Moraveji SA, Taghavi SA, Karimi F. Association between serum estradiol level on the day of hCG administration and IVF-ICSI outcome. J Obstet Gynaecol India. 2016;66:170–3.CrossRefGoogle Scholar
  70. 70.
    Yuan X, Saravelos SH, Wang Q, Xu Y, Li TC, Zhou C. Endometrial thickness as a predictor of pregnancy outcomes in 10787 fresh IVF-ICSI cycles. Reprod BioMed Online. 2016;33:197–205.CrossRefGoogle Scholar
  71. 71.
    Cooper TG, Noonan E, von Eckardstein S, Auger J, Baker HW, Behre HM. World Health Organization reference values for human semen characteristics. Hum Reprod Update. 2010;16:231–45.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • C. Bichara
    • 1
  • B. Berby
    • 1
  • A. Rives
    • 1
  • F. Jumeau
    • 1
  • M. Letailleur
    • 2
  • V. Setif
    • 1
  • L. Sibert
    • 3
  • C. Rondanino
    • 1
  • Nathalie Rives
    • 1
    Email author
  1. 1.Biology of Reproduction, CECOS Laboratory, Normandie Univ., UNIROUEN, EA 4308 “Gametogenesis and Gamete Quality”Rouen University HospitalRouenFrance
  2. 2.ART Center, Normandie Univ., UNIROUENRouen University HospitalRouenFrance
  3. 3.Department of Urology—Andrology, Normandie Univ., UNIROUEN, EA 4308 “Gametogenesis and Gamete Quality”Rouen University HospitalRouenFrance

Personalised recommendations