Advertisement

Morbid obesity–related changes in the expression of lipid receptors, transporters, and HSL in human sperm

  • Berniza Calderón
  • Lydia Huerta
  • María Emilia Casado
  • José Manuel González-Casbas
  • José Ignacio Botella-Carretero
  • Antonia Martín-HidalgoEmail author
Gamete Biology

Abstract

Objective

To study the location and expression of receptors (SR-BI/CLA-1, SR-BII, and LDLr) and transporter (ABCA1) involved in uptake and efflux of cholesterol in human spermatozoa and assess whether obesity alters its location/expression and whether this could be related to infertility.

Design

Observational study.

Setting

None

Patient(s)

Ten controls and 20 obese patients.

Intervention(s)

Anthropometric parameters. Serum and semen samples were collected.

Main outcome measure(s)

Spermatozoon concentration, immunolocalization, and protein expression in semen.

Results

Spermatozoon concentration and motility was decreased in morbidly obese patients. SR-BI/CLA-1, SR-BII, LDLr, and ABCA1 are located in the spermatozoon cell membrane and the localization does not change between obese patients and controls. Control spermatozoa showed high SR-BI expression, and less expression for the rest of the receptors analyzed, indicating that SR-BI/CLA-1 is relevant in human spermatozoon cholesterol uptake/efflux. On the contrary, spermatozoa of obese patients showed less SR-BI/CLA-1 expression than controls, and more intense positive staining for SR-BII, LDLr, and ABCA1. Finally, human sperm expresses the 130- and 82-kDa hormone-sensitive lipase (HSL) isoforms. The 130-kDa isoform is expressed in the control sperm, and the expression disappears in the obese patients.

Conclusion(s)

The presence of lipid receptors/transporters and HSL in human spermatozoa suggests their role in the process of maturation/capacitation. The changes in the expression of lipid receptors/transporters and the lack of the 130-kDa HSL isoform in obese patients prevent the hydrolysis of cholesterol esters internalized by these receptors, and favor their accumulation in the cytoplasm of the spermatozoa that could contribute to lipotoxicity and infertility.

Keywords

Lipid receptors and transporters Human spermatozoa Obesity Fertility Cholesterol 

Notes

Acknowledgments

We thank the members of Department of Biochemistry-Research for their help.

Author contribution

B.C. participated in the sample collection and data analysis and revised the manuscript.

L.H. participated in the sample collection and conducted the experiments.

M.E.C. participated in the data analysis.

J.M.G.C. participated in sample collection.

J.I.B.C. participated in the study design and revised the manuscript critically for important intellectual content.

A.M.H. participated in the study design and coordination, data analysis, and interpretation and wrote the manuscript.

Funding

Supported by Grants PI1501686 and PI1600154 from Instituto de Salud Carlos III, Spanish Ministry of Economy and Competitiveness. Supported in part by Fondo Europeo de Desarrollo Regional (FEDER) from the European Union. CIBERobn is also an initiative of Instituto de Salud Carlos III. Dr. Calderón received a grant from MESCYT, Dominican Republic Ministry of Superior Education.

Compliance with ethical standards

We included 10 healthy controls and 20 male patients with moderate to severe obesity who gave written informed consent to participate in a substudy and the study was approved by the Institutional Review Board of our hospital.

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

10815_2019_1406_MOESM1_ESM.ppt (573 kb)
Supplemental figure 1 Linear correlations between sperm concentration and BMI; EBW and serum estradiol; and sperm mobility and BMI, EBW and serum estradiol. Sperm concentration was inversely correlated with BMI (r = −0,428, p = 0.006), EBW (r = −0.419, p = 0.007) and serum estradiol (r = −0.507, P = 0.001). Total sperm motility was inversely correlated with BMI (r = −0.433, P = 0.005), EBW (r = −0.397, P = 0.011) and serum estradiol (r = −0.404, P = 0.030). (PPT 573 kb)
10815_2019_1406_MOESM2_ESM.doc (36 kb)
Supplemental table 1 Primary and secondary antibodies used in the studies of immunolocalization of proteins by immunohistochemistry in the human semen samples. The dilution and antibody source for each antibody is shown. (DOC 36.5 kb)
10815_2019_1406_MOESM3_ESM.docx (14 kb)
Supplemental table 2 Primary and secondary antibodies used in the studies of protein expression by western blot technique in human semen samples. The dilution and antibody source for each antibody is shown. (DOCX 14.1 kb)

References

  1. 1.
    Molecular mechanisms in spermatogenesis | PDF Free Download Ebook.Google Scholar
  2. 2.
    Keber R, Rozman D, Horvat S. Sterols in spermatogenesis and sperm maturation. J Lipid Res. 2013;54(1):20–33.CrossRefGoogle Scholar
  3. 3.
    Cooper TG. Sperm maturation in the epididymis: a new look at an old problem. Asian J Androl. 2007;9(4):533–9.CrossRefGoogle Scholar
  4. 4.
    Feki NC, Thérond P, Couturier M, Liméa G, Legrand A, Jouannet P, et al. Human sperm lipid content is modified after migration into human cervical mucus. Mol Hum Reprod. 2004;10(2):137–42.CrossRefGoogle Scholar
  5. 5.
    Nimmo MR, Cross NL. Structural features of sterols required to inhibit human sperm capacitation. Biol Reprod. 2003;68(4):1308–17.CrossRefGoogle Scholar
  6. 6.
    Pike LJ. Rafts defined: a report on the keystone symposium on lipid rafts and cell function. J Lipid Res. 2006;47(7):1597–8.CrossRefGoogle Scholar
  7. 7.
    Pike LJ. Lipid rafts: bringing order to chaos. J Lipid Res. 2003;44(4):655–67.CrossRefGoogle Scholar
  8. 8.
    Babitt J, Trigatti B, Rigotti A, Smart EJ, Anderson RG, Xu S, et al. Murine SR-BI, a high density lipoprotein receptor that mediates selective lipid uptake, is N-glycosylated and fatty acylated and colocalizes with plasma membrane caveolae. J Biol Chem. 1997;272(20):13242–9.CrossRefGoogle Scholar
  9. 9.
    Webb NR, Connell PM, Graf GA, Smart EJ, de Villiers WJ, de Beer FC, et al. SR-BII, an isoform of the scavenger receptor BI containing an alternate cytoplasmic tail, mediates lipid transfer between high density lipoprotein and cells. J Biol Chem. 1998;273(24):15241–8.CrossRefGoogle Scholar
  10. 10.
    Brown MS, Kovanen PT, Goldstein JL. Receptor-mediated uptake of lipoprotein-cholesterol and its utilization for steroid synthesis in the adrenal cortex. Recent Prog Horm Res. 1979;35:215–57.Google Scholar
  11. 11.
    Goldstein JL, Brown MS. The low-density lipoprotein pathway and its relation to atherosclerosis. Annu Rev Biochem. 1977;46:897–930.CrossRefGoogle Scholar
  12. 12.
    Rigotti A, Trigatti BL, Penman M, Rayburn H, Herz J, Krieger M. A targeted mutation in the murine gene encoding the high density lipoprotein (HDL) receptor scavenger receptor class B type I reveals its key role in HDL metabolism. Proc Natl Acad Sci U S A. 1997;94(23):12610–5.CrossRefGoogle Scholar
  13. 13.
    Gwynne JT, Strauss JF. The role of lipoproteins in steroidogenesis and cholesterol metabolism in steroidogenic glands. Endocr Rev. 1982;3(3):299–329.CrossRefGoogle Scholar
  14. 14.
    Thuahnai ST, Lund-Katz S, Anantharamaiah GM, Williams DL, Phillips MC. A quantitative analysis of apolipoprotein binding to SR-BI: multiple binding sites for lipid-free and lipid-associated apolipoproteins. J Lipid Res. 2003;44(6):1132–42.CrossRefGoogle Scholar
  15. 15.
    Acton S, Rigotti A, Landschulz KT, Xu S, Hobbs HH, Krieger M. Identification of scavenger receptor SR-BI as a high density lipoprotein receptor. Science. 1996;271(5248):518–20.CrossRefGoogle Scholar
  16. 16.
    Yvan-Charvet L, Wang N, Tall AR. Role of HDL, ABCA1, and ABCG1 transporters in cholesterol efflux and immune responses. Arterioscler Thromb Vasc Biol. 2010;30(2):139–43.CrossRefGoogle Scholar
  17. 17.
    Zolnerciks JK, Andress EJ, Nicolaou M, Linton KJ. Structure of ABC transporters. Essays Biochem. 2011;50(1):43–61.CrossRefGoogle Scholar
  18. 18.
    Wellington CL, Walker EKY, Suarez A, Kwok A, Bissada N, Singaraja R, et al. ABCA1 mRNA and protein distribution patterns predict multiple different roles and levels of regulation. Lab Investig. 2002;82(3):273–83.CrossRefGoogle Scholar
  19. 19.
    Palme N, Becher AC, Merkl M, Glösmann M, Aurich C, Schäfer-Somi S. Immunolocalization of the cholesterol transporters ABCA1 and ABCG1 in canine reproductive tract tissues and spermatozoa. Reprod Domest Anim. 2014;49(3):441–7.CrossRefGoogle Scholar
  20. 20.
    Sugkraroek P, Kates M, Leader A, Tanphaichitr N. Levels of cholesterol and phospholipids in freshly ejaculated sperm and Percoll-gradient-pelletted sperm from fertile and unexplained infertile men. Fertil Steril. 1991;55(4):820–7.CrossRefGoogle Scholar
  21. 21.
    Calderón B, Gómez-Martín JM, Vega-Piñero B, Martín-Hidalgo A, Galindo J, Luque-Ramírez M, et al. Prevalence of male secondary hypogonadism in moderate to severe obesity and its relationship with insulin resistance and excess body weight. Andrology. 2016;4(1):62–7.CrossRefGoogle Scholar
  22. 22.
    Campbell JM, Lane M, Owens JA, Bakos HW. Paternal obesity negatively affects male fertility and assisted reproduction outcomes: a systematic review and meta-analysis. Reprod BioMed Online. 2015;31(5):593–604.CrossRefGoogle Scholar
  23. 23.
    Montero PN, Stefanidis D, Norton HJ, Gersin K, Kuwada T. Reported excess weight loss after bariatric surgery could vary significantly depending on calculation method: a plea for standardization. Surg Obes Relat Dis Off J Am Soc Bariatr Surg. 2011;7(4):531–4.CrossRefGoogle Scholar
  24. 24.
    Shah B, Sucher K, Hollenbeck CB. Comparison of ideal body weight equations and published height-weight tables with body mass index tables for healthy adults in the United States. Nutr Clin Pract Off Publ Am Soc Parenter Enter Nutr. 2006;21(3):312–9.Google Scholar
  25. 25.
    Friedewald WT, Levy RI, Fredrickson DS. Estimation of the concentration of low-density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge. Clin Chem. 1972;18(6):499–502.Google Scholar
  26. 26.
    Vermeulen A, Verdonck L, Kaufman JM. A critical evaluation of simple methods for the estimation of free testosterone in serum. J Clin Endocrinol Metab. 1999;84(10):3666–72.CrossRefGoogle Scholar
  27. 27.
    Cooper TG, Noonan E, von Eckardstein S, Auger J, Baker HWG, Behre HM, et al. World Health Organization reference values for human semen characteristics. Hum Reprod Update. 2010;16(3):231–45.CrossRefGoogle Scholar
  28. 28.
    Alegria-Schaffer A. Western blotting using chemiluminescent substrates. Methods Enzymol. 2014;541:251–9.CrossRefGoogle Scholar
  29. 29.
    Taylor SC, Posch A. The design of a quantitative western blot experiment. Biomed Res Int. 2014;2014:361590.CrossRefGoogle Scholar
  30. 30.
    Casado ME, Huerta L, Ortiz AI, Pérez-Crespo M, Gutiérrez-Adán A, Kraemer FB, et al. HSL-knockout mouse testis exhibits class B scavenger receptor upregulation and disrupted lipid raft microdomains. J Lipid Res. 2012;53(12):2586–97.CrossRefGoogle Scholar
  31. 31.
    Pasquali R, Patton L, Gambineri A. Obesity and infertility. Curr Opin Endocrinol Diabetes Obes. 2007;14(6):482–7.CrossRefGoogle Scholar
  32. 32.
    Leahy T, Gadella BM. New insights into the regulation of cholesterol efflux from the sperm membrane. Asian J Androl. 2015;17(4):561–7.CrossRefGoogle Scholar
  33. 33.
    Trigatti B, Rayburn H, Viñals M, Braun A, Miettinen H, Penman M, et al. Influence of the high density lipoprotein receptor SR-BI on reproductive and cardiovascular pathophysiology. Proc Natl Acad Sci U S A. 1999;96(16):9322–7.CrossRefGoogle Scholar
  34. 34.
    Selva DM, Hirsch-Reinshagen V, Burgess B, Zhou S, Chan J, McIsaac S, et al. The ATP-binding cassette transporter 1 mediates lipid efflux from Sertoli cells and influences male fertility. J Lipid Res. 2004;45(6):1040–50.CrossRefGoogle Scholar
  35. 35.
    Volle DH, Mouzat K, Duggavathi R, Siddeek B, Déchelotte P, Sion B, et al. Multiple roles of the nuclear receptors for oxysterols liver X receptor to maintain male fertility. Mol Endocrinol. 2007;21(5):1014–27.CrossRefGoogle Scholar
  36. 36.
    Robertson KM, Schuster GU, Steffensen KR, Hovatta O, Meaney S, Hultenby K, et al. The liver X receptor-{beta} is essential for maintaining cholesterol homeostasis in the testis. Endocrinology. 2005;146(6):2519–30.CrossRefGoogle Scholar
  37. 37.
    Ouvrier A, Alves G, Damon-Soubeyrand C, Marceau G, Cadet R, Janny L, et al. Dietary cholesterol-induced post-testicular infertility. PLoS One. 2011;6(11):e26966.CrossRefGoogle Scholar
  38. 38.
    Osuga J, Ishibashi S, Oka T, Yagyu H, Tozawa R, Fujimoto A, et al. Targeted disruption of hormone-sensitive lipase results in male sterility and adipocyte hypertrophy, but not in obesity. Proc Natl Acad Sci U S A. 2000;97(2):787–92.CrossRefGoogle Scholar
  39. 39.
    Wang SP, Chung S, Soni K, Bourdages H, Hermo L, Trasler J, et al. Expression of human hormone-sensitive lipase (HSL) in postmeiotic germ cells confers normal fertility to HSL-deficient mice. Endocrinology. 2004;145(12):5688–93.CrossRefGoogle Scholar
  40. 40.
    Vallet-Erdtmann V, Tavernier G, Contreras JA, Mairal A, Rieu C, Touzalin A-M, et al. The testicular form of hormone-sensitive lipase HSLtes confers rescue of male infertility in HSL-deficient mice. J Biol Chem. 2004;279(41):42875–80.CrossRefGoogle Scholar
  41. 41.
    Casado ME, Pastor O, García-Seisdedos D, Huerta L, Kraemer FB, Lasunción MA, et al. Hormone-sensitive lipase deficiency disturbs lipid composition of plasma membrane microdomains from mouse testis. Biochim Biophys Acta. 2016;1861(9 Pt A):1142–50.CrossRefGoogle Scholar
  42. 42.
    Butler A, He X, Gordon RE, Wu H-S, Gatt S, Schuchman EH. Reproductive pathology and sperm physiology in acid sphingomyelinase-deficient mice. Am J Pathol. 2002;161(3):1061–75.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Instituto Tecnológico Santo Domingo (INTEC)Santo DomingoRepública Dominicana
  2. 2.Departamento de Endocrinología y MetabolismoMadridSpain
  3. 3.Servicio de Bioquímica-InvestigaciónMadridSpain
  4. 4.CIBER de la Fisiopatología de la Obesidad y Nutrición (CIBERobn), ISCIIIMadridSpain
  5. 5.Instituto Europeo de Fertilidad y Unidad de Reproducción Asistida, Instituto Ramón y Cajal de Investigación Sanitaria (IRyCIS)Hospital Universitario Ramón y CajalMadridSpain
  6. 6.Department of Biochemistry-ResearchHospital Universitario Ramón y CajalMadridSpain

Personalised recommendations