Advertisement

Journal of Assisted Reproduction and Genetics

, Volume 36, Issue 2, pp 223–228 | Cite as

The mitochondrial DNA content of cumulus cells may help predict embryo implantation

  • A. Taugourdeau
  • V. Desquiret-Dumas
  • J. F. Hamel
  • S. Chupin
  • L. Boucret
  • V. Ferré-L’Hotellier
  • P. E. Bouet
  • P. Descamps
  • V. Procaccio
  • P. Reynier
  • P. May-PanloupEmail author
Reproductive Physiology and Disease
  • 149 Downloads

Abstract

Purpose

The quantification of mtDNA in cumulus granulosa cells (CGCs) surrounding an oocyte has been positively linked with morphological embryonic quality. In the present study, we evaluated the link between the amount of mtDNA in CGCs surrounding an oocyte and the chances for the corresponding embryo of implanting and leading to an ongoing pregnancy.

Methods

This is an observational study, performed on 84 oocyte-cumulus-complexes (OCCs) having led to the replacement of an embryo in the maternal uterus, retrieved from 71 patients undergoing IVF with intracytoplasmic sperm. The OCCs were classified in two groups, one including 26 OCCs having led to an implanted embryo and the other including 58 OCCs having led to a non-implanted embryo. The average mtDNA content of CGCs was assessed by using a quantitative real-time PCR technique.

Results

Significantly higher mtDNA copy numbers in CGCs were associated with implanted embryos than with non-implanted embryos (mean 215 [sd 375] and 59 [sd 72], respectively; p < 104). Multivariate analysis, taking into account the women’s age, the embryo quality, and the AMH level, suggests an independent relationship between the mtDNA content of CGCs and the potential of embryo implantation.

Conclusion

During in vitro fertilization (IVF) procedures, the probability of the implantation of the embryo appears to be closely correlated to the mtDNA copy numbers in the CGCs. Our results highlight the interest of mtDNA quantification in GCGs as a biomarker of the potential of embryo implantation.

Keywords

Cumulus cells Granulosa cells Embryo implantation Mitochondria Mitochondrial DNA 

Notes

Acknowledgments

We are grateful to Kanaya Malkani for his critical reading and comments on the manuscript.

Funding

This study was supported by a grant from the “Agence de la Biomédecine” – Appel d’Offre Recherche “AMP, diagnostic prenatal et diagnostic génétique” 2017.

Compliance with ethical standards

All participants gave their written informed consent, and the study was approved by the Ethical Committee of the University Hospital of Angers, France (Numbers DC-2014-2224 and AC-2016-2799).

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Ishihara O, Adamson GD, Dyer S, de Mouzon J, Nygren KG, Sullivan EA, et al. International committee for monitoring assisted reproductive technologies: world report on assisted reproductive technologies, 2007. Fertil Steril. 2015;103:402–413.e11.CrossRefGoogle Scholar
  2. 2.
    Meseguer M, Rubio I, Cruz M, Basile N, Marcos J, Requena A. Embryo incubation and selection in a time-lapse monitoring system improves pregnancy outcome compared with a standard incubator: a retrospective cohort study. Fertil Steril. 2012;98:1481–1489.e10.CrossRefGoogle Scholar
  3. 3.
    Bromer JG, Seli E. Assessment of embryo viability in assisted reproductive technology: shortcomings of current approaches and the emerging role of metabolomics. Curr Opin Obstet Gynecol. 2008;20:234–41.CrossRefGoogle Scholar
  4. 4.
    Gardner DK, Meseguer M, Rubio C, Treff NR. Diagnosis of human preimplantation embryo viability. Hum Reprod Update. 2015;21:727–47.CrossRefGoogle Scholar
  5. 5.
    Feuerstein P, Puard V, Chevalier C, Teusan R, Cadoret V, Guerif F, et al. Genomic assessment of human cumulus cell marker genes as predictors of oocyte developmental competence: impact of various experimental factors. PLoS One. 2012;7:e40449.CrossRefGoogle Scholar
  6. 6.
    Dumesic DA, Guedikian AA, Madrigal VK, Phan JD, Hill DL, Alvarez JP, et al. Cumulus cell mitochondrial resistance to stress in vitro predicts oocyte development during assisted reproduction. J Clin Endocrinol Metab. 2016;101:2235–45.CrossRefGoogle Scholar
  7. 7.
    Ogino M, Tsubamoto H, Sakata K, Oohama N, Hayakawa H, Kojima T, et al. Mitochondrial DNA copy number in cumulus cells is a strong predictor of obtaining good-quality embryos after IVF. J Assist Reprod Genet. 2016;33:367–71.CrossRefGoogle Scholar
  8. 8.
    Desquiret-Dumas V, Clément A, Seegers V, Boucret L, Ferré-L’Hotellier V, Bouet PE, et al. The mitochondrial DNA content of cumulus granulosa cells is linked to embryo quality. Hum Reprod Oxf Engl. 2017;32:607–14.Google Scholar
  9. 9.
    Cohen J. Power analysis for the behavioral sciences. 2nd ed. Mahwah: Lawrence Erlbaum Associates Editors; 1988.Google Scholar
  10. 10.
    ASRM and ESHRE Special Interest Group of Embryology, Balaban B. The Istanbul consensus workshop on embryo assessment: proceedings of an expert meeting. Hum Reprod. 2011;26:1270–83.CrossRefGoogle Scholar
  11. 11.
    Rosenwaks Z. Biomarkers of embryo viability: the search for the “holy grail” of embryo selection. Fertil Steril. 2017;108(5):719–21.CrossRefGoogle Scholar
  12. 12.
    St John J. The control of mtDNA replication during differentiation and development. Biochim Biophys Acta. 2014;1840:1345–54.CrossRefGoogle Scholar
  13. 13.
    Boucret L, de la Barca JM C, Morinière C, Desquiret V, Ferré-L’Hôtellier V, Descamps P, et al. Relationship between diminished ovarian reserve and mitochondrial biogenesis in cumulus cells. Hum Reprod Oxf Engl. 2015;30:1653–64.CrossRefGoogle Scholar
  14. 14.
    Stigliani S, Persico L, Lagazio C, Anserini P, Venturini PL, Scaruffi P. Mitochondrial DNA in day 3 embryo culture medium is a novel, non-invasive biomarker of blastocyst potential and implantation outcome. Mol Hum Reprod. 2014;20:1238–46.CrossRefGoogle Scholar
  15. 15.
    Hammond ER, McGillivray BC, Wicker SM, Peek JC, Shelling AN, Stone P, et al. Characterizing nuclear and mitochondrial DNA in spent embryo culture media: genetic contamination identified. Fertil Steril. 2017;107:220–228.e5.CrossRefGoogle Scholar
  16. 16.
    Ravichandran K, McCaffrey C, Grifo J, Morales A, Perloe M, Munne S, et al. Mitochondrial DNA quantification as a tool for embryo viability assessment: retrospective analysis of data from single euploid blastocyst transfers. Hum Reprod Oxf Engl. 2017;32:1282–92.CrossRefGoogle Scholar
  17. 17.
    Fragouli E, McCaffrey C, Ravichandran K, Spath K, Grifo JA, Munné S, et al. Clinical implications of mitochondrial DNA quantification on pregnancy outcomes: a blinded prospective non-selection study. Hum Reprod Oxf Engl. 2017;32:2340–7.CrossRefGoogle Scholar
  18. 18.
    Victor AR, Brake AJ, Tyndall JC, Griffin DK, Zouves CG, Barnes FL, et al. Accurate quantitation of mitochondrial DNA reveals uniform levels in human blastocysts irrespective of ploidy, age, or implantation potential. Fertil Steril. 2017;107:34–42.e3.CrossRefGoogle Scholar
  19. 19.
    Fragouli E, Spath K, Alfarawati S, Kaper F, Craig A, Michel C-E, et al. Altered levels of mitochondrial DNA are associated with female age, aneuploidy, and provide an independent measure of embryonic implantation potential. PLoS Genet. 2015;11:e1005241.CrossRefGoogle Scholar
  20. 20.
    Collado-Fernandez E, Picton HM, Dumollard R. Metabolism throughout follicle and oocyte development in mammals. Int J Dev Biol. 2012;56(10–12):799–808.CrossRefGoogle Scholar
  21. 21.
    Bonomi M, Somigliana E, Cacciatore C, Busnelli M, Rossetti R, Bonetti S, et al. Italian Network for the study of Ovarian Dysfunctions. Blood cell mitochondrial DNA content and premature ovarian aging. PLoS One. 2012;7(8):e42423.CrossRefGoogle Scholar
  22. 22.
    Busnelli A, Lattuada D, Rossetti R, Paffoni A, Persani L, Fedele L, et al. Mitochondrial DNA copy number in peripheral blood: a potential non-invasive biomarker for female subfertility. J Assist Reprod Genet. 2018.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • A. Taugourdeau
    • 1
  • V. Desquiret-Dumas
    • 1
    • 2
  • J. F. Hamel
    • 3
    • 4
  • S. Chupin
    • 2
  • L. Boucret
    • 5
  • V. Ferré-L’Hotellier
    • 5
  • P. E. Bouet
    • 6
  • P. Descamps
    • 6
  • V. Procaccio
    • 1
    • 2
  • P. Reynier
    • 1
    • 2
  • P. May-Panloup
    • 1
    • 5
    Email author
  1. 1.MITOLAB, Institut MITOVASC, CNRS 6015, INSERM U1083Université d’AngersAngersFrance
  2. 2.Département de Biochimie et GénétiqueCentre Hospitalier Universitaire d’AngersAngersFrance
  3. 3.SFR ICATUniversité AngersAngersFrance
  4. 4.DRCI, Cellule Data ManagementCHU AngersAngersFrance
  5. 5.Laboratoire de Biologie de la ReproductionCentre Hospitalier Universitaire d’AngersAngers cedex 9France
  6. 6.Service de Gynécologie-ObstétriqueCentre Hospitalier Universitaire d’AngersAngersFrance

Personalised recommendations