Advertisement

The role of microRNAs in human embryo implantation: a review

  • Anthea B. M. Paul
  • Seifeldin T. Sadek
  • Arnold M. Mahesan
Review

Abstract

MicroRNAs (miRNAs) are emerging as important in human embryo implantation, and we present here a review of the literature from a clinical perspective. Implantation involves complex interactions between the blastocyst and endometrium. miRNAs have been shown to be differentially expressed in implanted compared with non-implanted blastocysts and euploid compared with aneuploid blastocysts. Further, miRNAs are differentially expressed in proliferative compared with decidualized endometrium, and in receptive compared with pre-receptive endometrium. miRNAs are also differentially expressed in endometrium of women who failed implantation, and in endometrium of women with recurrent implantation failure. Due to the complexity of miRNA signaling, studies have suffered from inconsistency in reproducibility of results. However, miRNAs show potential as biomarkers in the pursuit of more reliable prediction of embryo implantation.

Keywords

MicroRNA Human embryo Endometrium Implantation Pregnancy Recurrent implantation failure 

Notes

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest

Supplementary material

10815_2018_1326_MOESM1_ESM.docx (16 kb)
Supplementary Table 1 (DOCX 15 kb)

References

  1. 1.
    Paria BC, Huet-Hudson YM, Dey SK. Blastocyst’s state of activity determines the “window” of implantation in the receptive mouse uterus. Proc Natl Acad Sci U S A. 1993 Nov;90(21):10159–62.CrossRefGoogle Scholar
  2. 2.
    Liu W, Niu Z, Li Q, Pang RTK, Chiu PCN, Yeung WSB. MicroRNA and embryo implantation. American Journal of Reproductive Immunology. 2016.Google Scholar
  3. 3.
    Evans J, Salamonsen LA, Winship A, Menkhorst E, Nie G, Gargett CE, et al. Fertile ground: human endometrial programming and lessons in health and disease. Nat Rev Endocrinol. 2016;12:654–67.CrossRefGoogle Scholar
  4. 4.
    Salamonsen LA, Evans J, Nguyen HPT, Edgell TA. The microenvironment of human implantation: Determinant of reproductive success. American Journal of Reproductive Immunology. 2016.Google Scholar
  5. 5.
    Liang J, Wang S, Wang Z. Role of microRNAs in embryo implantation. Reprod Biol Endocrinol. 2017, 15;Google Scholar
  6. 6.
    Galliano D, Pellicer A. MicroRNA and implantation. In: Fertility and sterility, vol. 101; 2014. p. 1531–44.Google Scholar
  7. 7.
    Enders AC, Schlafke S, Hendrickx AG. Differentiation of the embryonic disc, amnion, and yolk sac in the rhesus monkey. Am J Anat. 1986;177:161–85.CrossRefGoogle Scholar
  8. 8.
    Diedrich K, Fauser BCJM, Devroey P, Griesinger G. The role of the endometrium and embryo in human implantation. Hum Reprod Update. 2007, 13, 365, 377;CrossRefGoogle Scholar
  9. 9.
    Bentin-Ley U, Sjogren A, Nilsson L, Hamberger L, Larsen JF, Horn T. Presence of uterine pinopodes at the embryo-endometrial interface during human implantation in vitro. Hum Reprod. 1999;14(2):515–20.CrossRefGoogle Scholar
  10. 10.
    Davidson LM, Coward K. Molecular mechanisms of membrane interaction at implantation. Birth Defects Res C Embryo Today. 2016;108(1):19–32.CrossRefGoogle Scholar
  11. 11.
    Chobotova K, Spyropoulou I, Carver J, Manek S, Heath JK, Gullick WJ, et al. Heparin-binding epidermal growth factor and its receptor ErbB4 mediate implantation of the human blastocyst. Mech Dev. 2002;119(2):137–44.CrossRefGoogle Scholar
  12. 12.
    Hamatani T, Carter MG, Sharov AA, Ko MSH. Dynamics of global gene expression changes during mouse preimplantation development. Dev Cell. 2004;6(1):117–31.CrossRefGoogle Scholar
  13. 13.
    Song H, Lim H, Das SK, Paria BC, Dey SK. Dysregulation of EGF family of growth factors and COX-2 in the uterus during the preattachment and attachment reactions of the blastocyst with the luminal epithelium correlates with implantation failure in LIF-deficient mice. Mol Endocrinol. 2000;14(8):1147–61.CrossRefGoogle Scholar
  14. 14.
    Mohamed OA, Jonnaert M, Labelle-Dumais C, Kuroda K, Clarke HJ, Dufort D. Uterine Wnt/beta-catenin signaling is required for implantation. Proc Natl Acad Sci U S A. 2005;102(24):8579–84.CrossRefGoogle Scholar
  15. 15.
    Cha J, Sun X, Dey SK. Mechanisms of implantation: strategies for successful pregnancy. Nat Med. 2012;18:1754–67.CrossRefGoogle Scholar
  16. 16.
    Bloor DJ, Metcalfe AD, Rutherford A, Brison DR, Kimber SJ. Expression of cell adhesion molecules during human preimplantation embryo development. Mol Hum Reprod. 2002;8(3):237–45.CrossRefGoogle Scholar
  17. 17.
    Kang Y-J, Forbes K, Carver J, Aplin JD. The role of the osteopontin-integrin alphavbeta3 interaction at implantation: functional analysis using three different in vitro models. Hum Reprod. 2014;29(4):739–49.CrossRefGoogle Scholar
  18. 18.
    Genbacev OD, Prakobphol A, Foulk RA, Krtolica AR, Ilic D, Singer MS, et al. Trophoblast L-selectin-mediated adhesion at the maternal-fetal interface. Science. 2003;299(5605):405–8.CrossRefGoogle Scholar
  19. 19.
    Clark K, Pankov R, Travis MA, Askari JA, Mould AP, Craig SE, et al. A specific alpha5beta1-integrin conformation promotes directional integrin translocation and fibronectin matrix formation. J Cell Sci. 2005;118(Pt 2):291–300.CrossRefGoogle Scholar
  20. 20.
    Lessey BA, Castelbaum AJ, Sawin SW, Sun J. Integrins as markers of uterine receptivity in women with primary unexplained infertility. Fertil Steril. 1995;63(3):535–42.CrossRefGoogle Scholar
  21. 21.
    Chen G, Xin A, Liu Y, Shi C, Chen J, Tang X, et al. Integrins beta1 and beta3 are biomarkers of uterine condition for embryo transfer. J Transl Med. 2016;14(1):303.CrossRefGoogle Scholar
  22. 22.
    Dorostghoal M, Ghaffari H-O-A, Shahbazian N, Mirani M. endometrial expression of beta3 integrin, calcitonin and plexin-B1 in the window of implantation in women with unexplained infertility. Int J Reprod Biomed (Yazd, Iran). 2017;15(1):33–40.CrossRefGoogle Scholar
  23. 23.
    Valadi H, Ekstrom K, Bossios A, Sjostrand M, Lee JJ, Lotvall JO. Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat Cell Biol. 2007;9(6):654–9.CrossRefGoogle Scholar
  24. 24.
    Arroyo JD, Chevillet JR, Kroh EM, Ruf IK, Pritchard CC, Gibson DF, et al. Argonaute2 complexes carry a population of circulating microRNAs independent of vesicles in human plasma. Proc Natl Acad Sci U S A. 2011;108(12):5003–8.CrossRefGoogle Scholar
  25. 25.
    Vickers KC, Palmisano BT, Shoucri BM, Shamburek RD, Remaley AT. MicroRNAs are transported in plasma and delivered to recipient cells by high-density lipoproteins. Nat Cell Biol. 2011;13(4):423–33.CrossRefGoogle Scholar
  26. 26.
    Ambros V. MicroRNAs: tiny regulators with great potential. Cell. 2001;107(7):823–6.CrossRefGoogle Scholar
  27. 27.
    Bagga S, Bracht J, Hunter S, Massirer K, Holtz J, Eachus R, et al. Regulation by let-7 and lin-4 miRNAs results in target mRNA degradation. Cell. 2005 Aug;122(4):553–63.CrossRefGoogle Scholar
  28. 28.
    Wu L, Fan J, Belasco JG. MicroRNAs direct rapid deadenylation of mRNA. Proc Natl Acad Sci U S A. 2006 Mar;103(11):4034–9.CrossRefGoogle Scholar
  29. 29.
    Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell. 2004;116(2):281–97.CrossRefGoogle Scholar
  30. 30.
    Hanke M, Hoefig K, Merz H, Feller AC, Kausch I, Jocham D, et al. A robust methodology to study urine microRNA as tumor marker: microRNA-126 and microRNA-182 are related to urinary bladder cancer. Urol Oncol. 2010;28(6):655–61.CrossRefGoogle Scholar
  31. 31.
    Ng YH, Rome S, Jalabert A, Forterre A, Singh H, Hincks CL, et al. Endometrial exosomes/microvesicles in the uterine microenvironment: a new paradigm for embryo-endometrial cross talk at implantation. PLoS One. 2013;8(3):e58502.CrossRefGoogle Scholar
  32. 32.
    Cuman C, Van Sinderen M, Gantier MP, Rainczuk K, Sorby K, Rombauts L, et al. Human blastocyst secreted microRNA regulate endometrial epithelial cell adhesion. EBioMedicine. 2015;2(10):1528–35.CrossRefGoogle Scholar
  33. 33.
    Bartel DP. MicroRNAs: target recognition and regulatory functions. Cell. 2009 Jan;136(2):215–33.CrossRefGoogle Scholar
  34. 34.
    Kung JTY, Colognori D, Lee JT. Long noncoding RNAs: past, present, and future. Genetics. 2013 Mar;193(3):651–69.CrossRefGoogle Scholar
  35. 35.
    Burgess DJ. Gene regulation: multiple mechanisms of small RNAs. Nat Rev Genet. 2015;16(2):70.CrossRefGoogle Scholar
  36. 36.
    Osella M, Riba A, Testori A, Corà D, Caselle M. Interplay of microRNA and epigenetic regulation in the human regulatory network. Vol. 5, Frontiers in Genetics. 2014.Google Scholar
  37. 37.
    Olsen PH, Ambros V. The LIN-4 regulatory RNA controls developmental timing in Caenorhabditis elegans by blocking LIN-14 protein synthesis after the initiation of translation. Dev Biol. 1999;216(2):671–80.CrossRefGoogle Scholar
  38. 38.
    Ha M, Kim VN. Regulation of microRNA biogenesis. Nat Rev Mol Cell Biol. 2014;15(8):509–24.CrossRefGoogle Scholar
  39. 39.
    Yi R, Qin Y, Macara IG, Cullen BR. Exportin-5 mediates the nuclear export of pre-microRNAs and short hairpin RNAs. Genes Dev. 2003;17(24):3011–6.CrossRefGoogle Scholar
  40. 40.
    Kim Y-K, Kim B, Kim VN. Re-evaluation of the roles of DROSHA, export in 5, and Dicer in microRNA biogenesis. Proc Natl Acad Sci U S A. 2016;113(13):E1881–9.CrossRefGoogle Scholar
  41. 41.
    Baxter Bendus AE, Mayer JF, Shipley SK, Catherino WH. Interobserver and intraobserver variation in day 3 embryo grading. Fertil Steril. 2006;86(6):1608–15.CrossRefGoogle Scholar
  42. 42.
    Capalbo A, Ubaldi FM, Cimadomo D, Noli L, Khalaf Y, Farcomeni A, et al. MicroRNAs in spent blastocyst culture medium are derived from trophectoderm cells and can be explored for human embryo reproductive competence assessment. Fertil Steril. 2016;105(1):225–235e3.CrossRefGoogle Scholar
  43. 43.
    Borges E, Setti AS, Braga DPAF, Geraldo M V., Figueira R de CS, Iaconelli A. miR-142-3p as a biomarker of blastocyst implantation failure - a pilot study. J Bras Reprod Assist 2016;20(4):200–205.Google Scholar
  44. 44.
    Rosenbluth EM, Shelton DN, Wells LM, Sparks AET, Van Voorhis BJ. Human embryos secrete microRNAs into culture media - a potential biomarker for implantation. Fertil Steril 2014;101(5):1493–1500.CrossRefGoogle Scholar
  45. 45.
    Rosenbluth EM, Shelton DN, Sparks AET, Devor E, Christenson L, Van Voorhis BJ. MicroRNA expression in the human blastocyst. Fertil Steril. 2013;99(3):855–861.e3.CrossRefGoogle Scholar
  46. 46.
    McCallie B, Schoolcraft WB, Katz-Jaffe MG. Aberration of blastocyst microRNA expression is associated with human infertility. Fertil Steril. 2010;93(7):2374–82.CrossRefGoogle Scholar
  47. 47.
    Sathyapalan T, David R, Gooderham NJ, Atkin SL. Increased expression of circulating miRNA-93 in women with polycystic ovary syndrome may represent a novel, non-invasive biomarker for diagnosis. Sci Rep. 2015;5:16890.CrossRefGoogle Scholar
  48. 48.
    Kuokkanen S, Chen B, Ojalvo L, Benard L, Santoro N, Pollard JW. Genomic profiling of microRNAs and messenger RNAs reveals hormonal regulation in microRNA expression in human endometrium. Biol Reprod. 2010;82(4):791–801.CrossRefGoogle Scholar
  49. 49.
    Kresowik JDK, Devor EJ, Van Voorhis BJ, Leslie KK. MicroRNA-31 is significantly elevated in both human endometrium and serum during the window of implantation: a potential biomarker for optimum receptivity1. Biol Reprod 2014;91(1):1–6.Google Scholar
  50. 50.
    Tochigi H, Kajihara T, Mizuno Y, Mizuno Y, Tamaru S, Kamei Y, et al. Loss of miR-542-3p enhances IGFBP-1 expression in decidualizing human endometrial stromal cells. Sci Rep. 2017;7:40001.CrossRefGoogle Scholar
  51. 51.
    Estella C, Herrer I, Moreno-Moya JM, Quiñonero A, Martínez S, Pellicer A, et al. MiRNA signature and Dicer requirement during human endometrial stromal decidualization in vitro. PLoS One. 2012;7(7).CrossRefGoogle Scholar
  52. 52.
    Altmäe S, Martinez-Conejero JA, Esteban FJ, Ruiz-Alonso M, Stavreus-Evers A, Horcajadas JA, et al. MicroRNAs miR-30b, miR-30d, and miR-494 regulate human endometrial receptivity. Reprod Sci. 2013;20(3):308–17.CrossRefGoogle Scholar
  53. 53.
    Parks JC, McCallie BR, Strieby A, McReynolds S, Schoolcraft WB, Katz-Jaffe MG. Non-invasive omics analysis of endometrial secretions 24 hours prior to frozen embryo transfer is predictive of implantation outcome. Fertil Steril. 2014;102(3):e134–5.CrossRefGoogle Scholar
  54. 54.
    Shi C, Shen H, Fan LJ, Guan J, Zheng XB, Chen X, et al. Endometrial microRNA signature during the window of implantation changed in patients with repeated implantation failure. Chin Med J. 2017;130(5):566–73.CrossRefGoogle Scholar
  55. 55.
    Revel A, Achache H, Stevens J, Smith Y, Reich R. MicroRNAs are associated with human embryo implantation defects. Hum Reprod. 2011;26(10):2830–40.CrossRefGoogle Scholar
  56. 56.
    Haouzi D, Drissennek L, Antoine Y, Entezami F, Gala A, Mullet T, et al. Identification of human endometrial microRNAs associated with repeated implantation failures. Fertil Steril. 2016;106(3):e218.CrossRefGoogle Scholar
  57. 57.
    Freis A, Keller A, Ludwig N, Meese E, Jauckus J, Rehnitz J, et al. Altered miRNA-profile dependent on ART outcome in early pregnancy targets Wnt-pathway. Reproduction. 2017;154(6):799–805.CrossRefGoogle Scholar
  58. 58.
    Khakbaz F, Mahani M. Micro-RNA detection based on fluorescence resonance energy transfer of DNA-carbon quantum dots probes. Anal Biochem. 2017;523:32–8.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Pathology and Laboratory MedicineUniversity of OttawaOttawaCanada
  2. 2.The Jones Institute for Reproductive MedicineEastern Virginia Medical SchoolNorfolkUSA

Personalised recommendations