Advertisement

Journal of Assisted Reproduction and Genetics

, Volume 35, Issue 9, pp 1573–1583 | Cite as

Euploid embryos selected by an automated time-lapse system have superior SET outcomes than selected solely by conventional morphology assessment

  • E. Rocafort
  • M. Enciso
  • A. Leza
  • J. Sarasa
  • J. Aizpurua
Assisted Reproduction Technologies

Abstract

Purpose

We investigated if automated TLI selection may be a valuable strategy to identify those euploid embryos with the best chances of success.

Methods

This is a unicentric and retrospective study involving 244 patients undergoing preimplantational genetic screening (PGS) cycles with autologous oocytes or oocyte donation (OD) with single euploid embryo transferred. We examined euploid embryos selected for transfer based on morphology evaluation alone (PGS-only; control group) or by assessment using an automated TLI system (Eeva™; PGS-TLI group).

Results

In both, autologous oocytes and OD patients, significantly better implantation and clinical and ongoing pregnancy rates were obtained in the PGS-TLI group when euploid embryos with high implantation potential as predicted by the automated TLI System (Eeva™) were transferred compared with the PGS-only group. This improvement was also observed when only transfers of good morphological quality embryos were compared. TLI categories showed significant differences on blastocyst formation and euploidy rate.

Conclusions

Automated TLI combined with PGS is a useful prognostic tool to identify euploid embryos with the highest potential for implantation and pregnancy. Further, these results provide evidence that a healthy pregnancy does not only depend upon normal chromosomal status.

Keywords

Preimplantation genetic screening Automated time-lapse imaging In vitro fertilization Oocyte donation Pregnancy rates 

Notes

Acknowledgments

The authors thank all the IVF-Spain team, especially the IVF Lab for their work and support. Medical writing assistance in the form of language editing and publication structure was provided by Kaedy Bryson (Zoetic Science, an Ashfield company, part of UDG Healthcare plc, Macclesfield, UK).

Authors’ contributions

E.R. is responsible for conception, design, acquisition, analysis, and interpretation of data and drafting and critical review of the article. M.E. is responsible for analysis and interpretation of data, drafting, and critical review of the article. A.L. is responsible for recruitment and acquisition of data. J.S. is responsible for analysis and interpretation of the data and critical review of the article. J.A. is responsible for the critical review of the article.

Funding

No external funding was either sought or obtained for this study.

Compliance with ethical standards

Competing interests

The authors declare that they have no competing interests.

Supplementary material

10815_2018_1265_MOESM1_ESM.docx (73 kb)
ESM 1 (DOCX 73 kb)
10815_2018_1265_MOESM2_ESM.docx (84 kb)
ESM 2 (DOCX 83 kb)

References

  1. 1.
    De Sutter P, Gerris J, Dhont M. A health-economic decision-analytic model comparing double with single embryo transfer in IVF/ICSI: a sensitivity analysis. Hum Reprod. 2003:1361.Google Scholar
  2. 2.
    Bromer JG, Ata B, Seli M, Lockwood CJ, Seli E. Preterm deliveries that result from multiple pregnancies associated with assisted reproductive technologies in the USA: a cost analysis. Curr Opin Obstet Gynecol [Internet]. 2011;23:168–173. Available from: http://ovidsp.ovid.com/ovidweb.cgi?T=JS&PAGE=reference&D=emed10&NEWS=N&AN=2011267305
  3. 3.
    Swain JE, Carrell D, Cobo A, Meseguer M, Rubio C, Smith GD. Optimizing the culture environment and embryo manipulation to help maintain embryo developmental potential. Fertil Steril. 2016;105:571–87.CrossRefPubMedGoogle Scholar
  4. 4.
    Wong KM, Mastenbroek S, Repping S. Cryopreservation of human embryos and its contribution to in vitro fertilization success rates. Fertil Steril [Internet]. Elsevier Inc.; 2014;102:19–26. Available from:  https://doi.org/10.1016/j.fertnstert.2014.05.027
  5. 5.
    Vélez MP, Kadoch IJ, Phillips SJ, Bissonnette F. Rapid policy change to single-embryo transfer while maintaining pregnancy rates per initiated cycle. Reprod BioMed Online. 2013;26:506–11.CrossRefPubMedGoogle Scholar
  6. 6.
    Lee AM, Connell MT, Csokmay JM, Styer AK. Elective single embryo transfer—the power of one. Contraception Reprod Med [Internet]; 2016;1:11. Available from: http://contraceptionmedicine.biomedcentral.com/articles/10.1186/s40834-016-0023-4
  7. 7.
    Steinberg ML, Boulet S, Kissin D, Warner L, Jamieson DJ. Elective single embryo transfer trends and predictors of a good perinatal outcome—United States, 1999 to 2010. Fertil Steril. 2013;99:1937–43.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Balaban B, Brison D, Calderón G, Catt J, Conaghan J, Cowan L, et al. Istanbul consensus workshop on embryo assessment: proceedings of an expert meeting. Reprod BioMed Online. 2011;22:632–46.CrossRefGoogle Scholar
  9. 9.
    Zhou W, Fu L, Sha W, Chu D, Li Y. Relationship of polar bodies morphology to embryo quality and pregnancy outcome. Zygote [Internet]. 2015;1–7. Available from: http://www.ncbi.nlm.nih.gov/pubmed/26198980.
  10. 10.
    Scott L, Finn A, O’Leary T, McLellan S, Hill J. Morphologic parameters of early cleavage-stage embryos that correlate with fetal development and delivery: prospective and applied data for increased pregnancy rates. Hum Reprod. 2007;22:230–40.CrossRefPubMedGoogle Scholar
  11. 11.
    Van Den Abbeel E, Balaban B, Ziebe S, Lundin K, Cuesta MJG, Klein BM, et al. Association between blastocyst morphology and outcome of single-blastocyst transfer. Reprod BioMed Online. 2013;27:353–61.CrossRefPubMedGoogle Scholar
  12. 12.
    Alfarawati S, Fragouli E, Colls P, Stevens J, Gutiérrez-Mateo C, Schoolcraft WB, et al. The relationship between blastocyst morphology, chromosomal abnormality, and embryo gender. Fertil Steril. 2011;95:520–4.Google Scholar
  13. 13.
    Obstet AG, Sigalos GA, Triantafyllidou O, Vlahos NF. Novel embryo selection techniques to increase embryo implantation in IVF attempts. Arch Gynecol Obstet. 2016;294(6):1117–24.CrossRefGoogle Scholar
  14. 14.
    Jacobs PA. Retrospective and prospective epidemiological studies of 1,500 karyotyped spontaneous human abortions. Birth Defects Res A Clin Mol Teratol. 2013:487–8.Google Scholar
  15. 15.
    Plachot M. Chromosome analysis of spontaneous abortions after IVF. A European survey. Hum Reprod [Internet]. 1989;4:425–429. Available from: http://www.ncbi.nlm.nih.gov/pubmed/2501337.
  16. 16.
    Stephenson MD, Awartani KA, Robinson WP. Cytogenetic analysis of miscarriages from couples with recurrent miscarriage: a case-control study. Hum Reprod. 2002;17:446–51. Available from: http://www.ncbi.nlm.nih.gov/pubmed/11821293%5Cn. http://humrep.oxfordjournals.org/content/17/2/446.full.pdf.
  17. 17.
    Sugiura-Ogasawara M, Ozaki Y, Katano K, Suzumori N, Kitaori T, Mizutani E. Abnormal embryonic karyotype is the most frequent cause of recurrent miscarriage. Hum Reprod. 2012;27:2297–303.CrossRefPubMedGoogle Scholar
  18. 18.
    Barri PN, Coroleu B, Clua E, Tur R, Boada M, Rodriguez I. Investigations into implantation failure in oocyte-donation recipients. Reprod BioMed Online. 2014;28:99–105.CrossRefPubMedGoogle Scholar
  19. 19.
    Forman EJ, Hong KH, Ferry KM, Tao X, Taylor D, Levy B, et al. In vitro fertilization with single euploid blastocyst transfer: a randomized controlled trial. Fertil Steril [Internet]. Elsevier Inc.; 2013;100:100–107.e1. Available from:  https://doi.org/10.1016/j.fertnstert.2013.02.056
  20. 20.
    Scott RT, Upham KM, Forman EJ, Hong KH, Scott KL, Taylor D, et al. Blastocyst biopsy with comprehensive chromosome screening and fresh embryo transfer significantly increases in vitro fertilization implantation and delivery rates: a randomized controlled trial. Fertil Steril. 2013;100:697–703.CrossRefPubMedGoogle Scholar
  21. 21.
    Yang Z, Liu J, Collins GS, Salem SA, Liu X, Lyle SS, et al. Selection of single blastocysts for fresh transfer via standard morphology assessment alone and with array CGH for good prognosis IVF patients: results from a randomized pilot study. Mol Cytogenet [Internet]. 2012;5:24. Available from: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3403960&tool=pmcentrez&rendertype=abstract
  22. 22.
    Dahdouh EM, Balayla J, García-Velasco JA. Impact of blastocyst biopsy and comprehensive chromosome screening technology on preimplantation genetic screening: a systematic review of randomized controlled trials. Reprod BioMed Online. 2015;30:281–9.CrossRefPubMedGoogle Scholar
  23. 23.
    Schoolcraft WB, Surrey E, Minjarez D, Gustofson RL, Scott RT, Katz-Jaffe MG, et al. Comprehensive chromosome screening (CCS) with vitrification results in improved clinical outcome in women >35 years: a randomized control trial. Fertil Steril. Elsevier Ltd; 2012;98:S1. Available from:  https://doi.org/10.1016/j.fertnstert.2012.07.002
  24. 24.
    Lee E, Illingworth P, Wilton L, Chambers GM. The clinical effectiveness of preimplantation genetic diagnosis for aneuploidy in all 24 chromosomes (PGD-A): systematic review. Hum Reprod. 2015:473–83.Google Scholar
  25. 25.
    Vaiarelli A, Cimadomo D, Capalbo A, Orlando G, Sapienza F, Colamaria S, Palagiano A, Bulletti C, Rienzi L, Ubaldi FM Pre-implantation genetic testing in ART: who will benefit and what is the evidence?. J Assist Reprod Genet [Internet]; 2016;33:1273–1278. Available from:  https://doi.org/10.1007/s10815-016-0785-2
  26. 26.
    Capalbo A, Rienzi L, Cimadomo D, Maggiulli R, Elliott T, Wright G, et al. Correlation between standard blastocyst morphology, euploidy and implantation: an observational study in two centers involving 956 screened blastocysts. Hum Reprod. 2014;29:1173–81.Google Scholar
  27. 27.
    Montag M, Toth B, Strowitzki T. New approaches to embryo selection. Reprod BioMed Online. 2013:539–46.Google Scholar
  28. 28.
    Gardner DK, Meseguer M, Rubio C, Treff NR. Diagnosis of human preimplantation embryo viability. Hum Reprod Update. 2015;21:727–47.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Fragouli E, Spath K, Alfarawati S, Kaper F, Craig A, Michel C-E, et al. Altered levels of mitochondrial DNA are associated with female age, aneuploidy, and provide an independent measure of embryonic implantation potential. PLoS Genet [Internet]. 2015;11:e1005241. Available from: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=4454688&tool=pmcentrez&rendertype=abstract
  30. 30.
    Diez-Juan A, Rubio C, Marin C, Martinez S, Al-Asmar N, Riboldi M, et al. Mitochondrial DNA content as a viability score in human euploid embryos: less is better. Fertil Steril. 2015;104:534–541.e1.CrossRefPubMedGoogle Scholar
  31. 31.
    Tejera A, Castello D, de Los Santos JM, Pellicer A, Remohi J. Meseguer M. Fertil Steril: Combination of metabolism measurement and a time-lapse system provides an embryo selection method based on oxygen uptake and chronology of cytokinesis timing; 2016.Google Scholar
  32. 32.
    Dominguez F, Meseguer M, Aparicio-Ruiz B, Piqueras P, Quiñonero A, Simón C. New strategy for diagnosing embryo implantation potential by combining proteomics and time-lapse technologies. Fertil Steril. 2015;104:908–14.CrossRefPubMedGoogle Scholar
  33. 33.
    Treff NR, Zhan Y, Tao X, Olcha M, Han M, Rajchel J, et al. Levels of trophectoderm mitochondrial DNA do not predict the reproductive potential of sibling embryos. Hum Reprod. 2017;32:954–62.Google Scholar
  34. 34.
    Wong CC, Loewke KE, Bossert NL, Behr B, De Jonge CJ, Baer TM, et al. Non-invasive imaging of human embryos before embryonic genome activation predicts development to the blastocyst stage. Nat Biotechnol. 2010;28:1115–21. Available from: http://www.ncbi.nlm.nih.gov/pubmed/20890283 CrossRefPubMedGoogle Scholar
  35. 35.
    Chavez SL, Loewke KE, Han J, Moussavi F, Colls P, Munne S, et al. Dynamic blastomere behaviour reflects human embryo ploidy by the four-cell stage. Nat Commun [Internet]. 2012;3:1251. Available from: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3535341&tool=pmcentrez&rendertype=abstract
  36. 36.
    Conaghan J, Chen AA, Willman SP, Ivani K, Chenette PE, Boostanfar R, et al. Improving embryo selection using a computer-automated time-lapse image analysis test plus day 3 morphology: results from a prospective multicenter trial. Fertil Steril. 2013;100:412–419.e5.Google Scholar
  37. 37.
    Vermilyea MD, Tan L, Anthony JT, Conaghan J, Ivani K, Gvakharia M, et al. Computer-automated time-lapse analysis results correlate with embryo implantation and clinical pregnancy: a blinded, multi-centre study. Reprod BioMed Online [Internet]. Reproductive Healthcare Ltd.; 2014;29:729–736. Available from:  https://doi.org/10.1016/j.rbmo.2014.09.005
  38. 38.
    Adamson GD, Abusief ME, Palao L, Witmer J, Palao LM, Gvakharia M. Improved implantation rates of day 3 embryo transfers with the use of an automated time-lapse-enabled test to aid in embryo selection. Fertil Steril [Internet]. Elsevier Inc.; 2016;105:369–375. Available from:  https://doi.org/10.1016/j.fertnstert.2015.10.030
  39. 39.
    Aparicio-Ruiz B, Basile N, Pérez Albalá S, Bronet F, Remohí J, Meseguer M. Automatic time-lapse instrument is superior to single-point morphology observation for selecting viable embryos: retrospective study in oocyte donation. Fertil Steril [Internet]. 2016;106:1379–1385.e10. Available from: http://linkinghub.elsevier.com/retrieve/pii/S0015028216626237
  40. 40.
    Kieslinger DC, De Gheselle S, Lambalk CB, De Sutter P, Kostelijk EH, Twisk JWR, et al. Embryo selection using time-lapse analysis (early embryo viability assessment) in conjunction with standard morphology: a prospective two-center pilot study. Hum Reprod. 2016;31:2450–7.CrossRefPubMedGoogle Scholar
  41. 41.
    Diamond MP, Suraj V, Behnke EJ, Yang X, Angle MJ, Lambe-Steinmiller JC, et al. Using the Eeva test™ adjunctively to traditional day 3 morphology is informative for consistent embryo assessment within a panel of embryologists with diverse experience. J Assist Reprod Genet. 2014;32:61–8.CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Cruz M, Gadea B, Garrido N, Pedersen KS, Martínez M, Pérez-Cano I, et al. Embryo quality, blastocyst and ongoing pregnancy rates in oocyte donation patients whose embryos were monitored by time-lapse imaging. J Assist Reprod Genet. 2011;28:569–73.Google Scholar
  43. 43.
    Meseguer M, Herrero J, Tejera A, Hilligsøe KM, Ramsing NB, Remoh J. The use of morphokinetics as a predictor of embryo implantation. Hum Reprod. 2011;26:2658–71. Available from: http://humrep.oxfordjournals.org/lookup/doi/10.1093/humrep/der256 CrossRefPubMedGoogle Scholar
  44. 44.
    Perez S, Rubio I, Aparicio B, Beltran D, Garcia-Laez V, Meseguer M. Prospective validation of a time-lapse based algorithm for embryo selection. Fertil Steril. 2014:e322.Google Scholar
  45. 45.
    Chen A A., Tan L, Suraj V, Reijo Pera R, Shen S. Biomarkers identified with time-lapse imaging: discovery, validation, and practical application. Fertil Steril [Internet]. 2013;99:1035–1043. Available from:  https://doi.org/10.1016/j.fertnstert.2013.01.143
  46. 46.
    Rubio I, Galán A, Larreategui Z, Ayerdi F, Bellver J, Herrero J, et al. Clinical validation of embryo culture and selection by morphokinetic analysis: a randomized, controlled trial of the EmbryoScope. Fertil Steril. 2014;102:1287–94.CrossRefPubMedGoogle Scholar
  47. 47.
    Goodman LR, Goldberg J, Falcone T, Austin C, Desai N. Does the addition of time-lapse morphokinetics in the selection of embryos for transfer improve pregnancy rates? A randomized controlled trial. Fertil Steril [Internet]. Elsevier Inc.; 2015; Available from:  https://doi.org/10.1016/j.fertnstert.2015.10.013
  48. 48.
    Milewski R, Kuczyńska A, Stankiewicz B, Kuczyński W. How much information about embryo implantation potential is included in morphokinetic data? A prediction model based on artificial neural networks and principal component analysis. Adv Med Sci. 2017;62:202–6.CrossRefPubMedGoogle Scholar
  49. 49.
    Pribenszky C, Nilselid AM, Montag M. Time-lapse culture with morphokinetic embryo selection improves pregnancy and live birth chances and reduces early pregnancy loss: a meta-analysis. Reprod BioMed Online. 2017;35:511–20.CrossRefPubMedGoogle Scholar
  50. 50.
    Basile N, Nogales MDC, Bronet F, Florensa M, Riqueiros M, Rodrigo L, et al. Increasing the probability of selecting chromosomally normal embryos by time-lapse morphokinetics analysis. Fertil Steril [Internet]. 2014;101:699–704.e1. Available from:  https://doi.org/10.1016/j.fertnstert.2013.12.005
  51. 51.
    Vera-Rodriguez M, Chavez SL, Rubio C, Reijo Pera RA, Simon C. Prediction model for aneuploidy in early human embryo development revealed by single-cell analysis. Nat Commun [Internet]. 2015;6:7601. Available from: http://www.nature.com/doifinder/10.1038/ncomms8601
  52. 52.
    Campbell A, Fishel S, Bowman N, Duffy S, Sedler M, Thornton S. Retrospective analysis of outcomes after IVF using an aneuploidy risk model derived from time-lapse imaging without PGS. Reprod BioMed Online. 2013;27:140–6.CrossRefPubMedGoogle Scholar
  53. 53.
    Rienzi L, Capalbo A, Stoppa M, Romano S, Maggiulli R, Albricci L, et al. No evidence of association between blastocyst aneuploidy and morphokinetic assessment in a selected population of poor-prognosis patients: a longitudinal cohort study. Reprod BioMed Online. 2015;30:57–66.Google Scholar
  54. 54.
    Kramer YG, Kofinas JD, Melzer K, Noyes N, McCaffrey C, Buldo-Licciardi J, et al. Assessing morphokinetic parameters via time lapse microscopy (TLM) to predict euploidy: are aneuploidy risk classification models universal? J Assist Reprod Genet. 2014;31:1231–42.Google Scholar
  55. 55.
    Reignier A, Lammers J, Barriere P, Freour T. Can time-lapse parameters predict embryo ploidy? A systematic review. Reprod BioMed Online [Internet]. Elsevier Ltd; 2018; Available from:  https://doi.org/10.1016/j.rbmo.2018.01.001.
  56. 56.
    Yang Z, Zhang J, Salem SA, Liu X, Kuang Y, Salem RD, et al. Selection of competent blastocysts for transfer by combining time-lapse monitoring and array CGH testing for patients undergoing preimplantation genetic screening: a prospective study with sibling oocytes. BMC Med Genet [Internet]. 2014;7:38. Available from: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=4077552&tool=pmcentrez&rendertype=abstract
  57. 57.
    Hurtado de Mendoza MV, Ten J. Evaluación morfológica de cada estadio de D+0 a D+3. Cuad Embriol clínica criterios ASEBIR valoración morfológica oocitos, embriones tempranos y blastocistos humanos. 2015;9–20.Google Scholar
  58. 58.
    Gardner DK, Schoolcraft WB. Culture and transfer of human blastocysts. Curr Opin Obstet Gynecol [Internet]. 1999;11:307–311. Available from: http://www.ncbi.nlm.nih.gov/pubmed/10369209.
  59. 59.
    Gardner DK, Sakkas D. Assessment of embryo viability: the ability to select a single embryo for transfer—a review. Placenta. 2003;24:S5–S12.CrossRefPubMedGoogle Scholar
  60. 60.
    Kuwayama M. Highly efficient vitrification for cryopreservation of human oocytes and embryos: the Cryotop method. Theriogenology. 2007;67:73–80.CrossRefPubMedGoogle Scholar
  61. 61.
    Maheshwari A, Papathanasiou A, Osmani B, Teoh P. Morphological assessment of embryo quality during assisted reproduction: a systematic review. Fertil Sci Res [Internet]. 2014;1:67. Available from: http://www.fertilityscienceresearch.org/text.asp?2014/1/2/67/162776
  62. 62.
    Basile N, Morbeck D, García-Velasco J, Bronet F, Meseguer M. Type of culture media does not affect embryo kinetics: a time-lapse analysis of sibling oocytes. Hum Reprod. 2013;28:634–41.CrossRefPubMedGoogle Scholar
  63. 63.
    Kirkegaard K, Hindkjaer JJ, Ingerslev HJ. Effect of oxygen concentration on human embryo development evaluated by time-lapse monitoring. Fertil Steril. 2013;99:738–744.e4.CrossRefPubMedGoogle Scholar
  64. 64.
    Muñoz M, Cruz M, Humaidan P, Garrido N, Pérez-Cano I, Meseguer M. The type of GnRH analogue used during controlled ovarian stimulation influences early embryo developmental kinetics: a time-lapse study. Eur J Obstet Gynecol Reprod Biol. 2013;168:167–72.CrossRefPubMedGoogle Scholar
  65. 65.
    Cruz M, Garrido N, Gadea B, Muñoz M, Pérez-Cano I, Meseguer M. Oocyte insemination techniques are related to alterations of embryo developmental timing in an oocyte donation model. Reprod BioMed Online. 2013;27:367–75.CrossRefPubMedGoogle Scholar
  66. 66.
    Bodri D, Sugimoto T, Serna JY, Kondo M, Kato R, Kawachiya S, et al. Influence of different oocyte insemination techniques on early and late morphokinetic parameters: retrospective analysis of 500 time-lapse monitored blastocysts. Fertil Steril. 2015;104:1175–1181.e2.CrossRefPubMedGoogle Scholar
  67. 67.
    Conaghan J, Tan L, Gvakharia M, Ivani K, Shen S, Pera R, et al. Dynamic assessment of early embryo fragmentation by time-lapse analysis may improve cell cycle timing-based embryo selection. Nat Biotech Nat Comm. 2010;28:1115–211251.CrossRefGoogle Scholar
  68. 68.
    Lee YSL, Thouas GA, Gardner DK. Developmental kinetics of cleavage stage mouse embryos are related to their subsequent carbohydrate and amino acid utilization at the blastocyst stage. Hum Reprod. 2015;30:543–52.CrossRefPubMedGoogle Scholar
  69. 69.
    Bontekoe S, Mantikou E, van Wely M, Seshadri S, Repping S, Mastenbroek S. Low oxygen concentrations for embryo culture in assisted reproductive technologies. Cochrane database Syst rev [Internet]. 2012;7:CD008950. Available from: http://www.ncbi.nlm.nih.gov/pubmed/22786519.
  70. 70.
    Herbemont C, Sarandi S, Boujenah J, Cedrin-Durnerin I, Sermondade N, Vivot A, et al. Should we consider day-2 and day-3 embryo morphology before day-5 transfer when blastocysts reach a similar good quality? Reprod BioMed Online. 2017;35:521–8.Google Scholar
  71. 71.
    Irani M, Reichman D, Robles A, Melnick A, Davis O, Zaninovic N, et al. Morphologic grading of euploid blastocysts influences implantation and ongoing pregnancy rates. Fertil Steril [Internet]. Elsevier Inc.; 2017;107:664–70. Available from:  https://doi.org/10.1016/j.fertnstert.2016.11.012
  72. 72.
    Taylor TH, Patrick JL, Gitlin SA, Wilson JM, Crain JL, Griffin DK. Comparison of aneuploidy, pregnancy and live birth rates between day 5 and day 6 blastocysts. Reprod BioMed Online [Internet]. Reproductive Healthcare Ltd.; 2014;29:305–310. Available from:  https://doi.org/10.1016/j.rbmo.2014.06.001

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.IVF LaboratoryIVF SpainAlicanteSpain
  2. 2.BarcelonaSpain
  3. 3.Genetics DepartmentiGLSAlicanteSpain
  4. 4.Reproductive MedicineIVF SpainAlicanteSpain

Personalised recommendations