Advertisement

Journal of Assisted Reproduction and Genetics

, Volume 35, Issue 8, pp 1483–1488 | Cite as

“Evaluation of four genes associated with primary ovarian insufficiency in a cohort of Mexican women”

  • K. J. Juárez-Rendón
  • J. E. García-Ortiz
Genetics
  • 54 Downloads

Abstract

Purpose

Primary ovarian insufficiency (POI) is a clinical condition observed in women younger than 40 years of age, characterized by amenorrhea, hypoestrogenism, high levels of follicle-stimulating hormone (FSH), and infertility. Mutations in some master regulators of the development, maturation, and maintenance of ovarian follicles such as BMP15, FSHR, FOXL2, and GDF9 have been suggested as etiological factors in the development of POI. The aim of this study, the first in the Mexican population, is to evaluate the presence of mutations or polymorphisms in these four candidate genes.

Methods

In a sample of 20 Mexican patients with idiopathic POI, we looked for and analyzed genetic variants in BMP15, FSHR, FOXL2, and GDF9 genes.

Results

We observed two polymorphisms: a coding change, c.919G>A (p.Ala307Thr), in the FSHR gene and a synonymous variant, c.447C>T (p.Thr149Thr), in the GDF9 gene. These two variants have been reported previously as polymorphisms (rs6165 and rs254286, respectively). We observed no significant difference associated with POI in the patients when compared with a healthy control group (p > 0.05). Also, no exonic variants were found for the genes BMP15 and FOXL2 in the individuals tested.

Conclusions

The lack of association of the evaluated genes in this sample of Mexican women is consistent with the complex genetic etiology of POI that is observed across cohorts studied thus far.

Keywords

Primary ovarian insufficiency BMP15 FSHR FOXL2 GDF9 Mexican population 

Notes

Compliance with ethical standards

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.

References

  1. 1.
    Chaloutsou K, Aggelidis P, Pampanos A, Theochari E, Michala L. Premature ovarian insufficiency: an adolescent series. J Pediatr Adolesc Gynecol. 2017;30:615–9.CrossRefPubMedGoogle Scholar
  2. 2.
    Carlosama C, Elzaiat M, Patiño LC, Mateus HE, Veitia RA, Laissue P. A homozygous donor splice-site mutation in the meiotic gene MSH4 causes primary ovarian insufficiency. Hum Mol Genet. 2017;26:3161–6.PubMedGoogle Scholar
  3. 3.
    Desai S, Wood-Trageser M, Matic J, Chipkin J, Jiang H, Bachelot A, et al. MCM8 and MCM9 nucleotide variants in women with primary ovarian insufficiency. J Clin Endocrinol Metab. 2017;102:576–82.PubMedGoogle Scholar
  4. 4.
    Gunsha N, Rojas J, Bermúdez V. Osteoporosis in a 30-yr old woman with premature ovarian insufficiency. Case report. Archivos Venezolanos de Farmacología y Terapéutica. 2015;34:31–5.Google Scholar
  5. 5.
    Košir Pogačnik R, Meden Vrtovec H, Vizjak A, Uršula Levičnik A, Slabe N, Ihan A. Possible role of autoimmunity in patients with premature ovarian insufficiency. Int J Fertil Steril. 2014;7:281–90.PubMedGoogle Scholar
  6. 6.
    Guo T, Zhao S, Zhao S, Chen M, Li G, Jiao X, et al. Mutations in MSH5 in primary ovarian insufficiency. Hum Mol Genet. 2017;26:1452–7.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Rossetti R, Ferrari I, Bonomi M, Persani L. Genetics of primary ovarian insufficiency. Clin Genet. 2017;91:183–98.CrossRefPubMedGoogle Scholar
  8. 8.
    Bouilly J, Beau I, Barraud S, Bernard V, Azibi K, Fagart J. Identification of multiple gene mutations accounts for a new genetic architecture of primary ovarian insufficiency. J Clin Endocrinol Metab. 2016;101:4541–50.CrossRefPubMedGoogle Scholar
  9. 9.
    Pu D, Xing Y, Gao Y, Gu L, Wu J. Gene variation and premature ovarian failure: a meta-analysis. Eur J Obstet Gynecol Reprod Biol. 2014;182:226–37.CrossRefPubMedGoogle Scholar
  10. 10.
    Mohamadhashem F, Rafati M, Hoseininasab F, Rostami S, Tabatabaie R, Rezai S, et al. Primary ovarian insufficiency with t(5;13): a case report and literature review on disrupted genes. Climacteric. 2017;20:498–502.CrossRefPubMedGoogle Scholar
  11. 11.
    Vabre P, Gatimel N, Moreau J, Gayrard V, Picard-Hagen N, Parinaud J, et al. Environmental pollutants, a possible etiology for premature ovarian insufficiency: a narrative review of animal and human data. Environ Health. 2017;16:37.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Lin J, Li XL, Song H, Li Q, Wang MY, Qiu XM, et al. A general description for Chinese medicine in treating premature ovarian failure. Chin J Integr Med. 2017;23:91–7.CrossRefPubMedGoogle Scholar
  13. 13.
    Nguyen HH, Milat F, Vincent A. Premature ovarian insufficiency in general practice: meeting the needs of women. Aust Fam Physician. 2017;46:360–6.PubMedGoogle Scholar
  14. 14.
    Qin Y, Jiao X, Simpson JL, Chen ZJ. Genetics of primary ovarian insufficiency: new developments and opportunities. Hum Reprod Update. 2015;21:787–808.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    França MM, Funari MFA, Nishi MY, Narcizo AM, Domenice S, Costa EMF, et al. Identification of the first homozygous 1-bp deletion in GDF9 gene leading to primary ovarian insufficiency by using targeted massively parallel sequencing. Clin Genet. 2018;93:408–11.CrossRefPubMedGoogle Scholar
  16. 16.
    Cordts EB, Santos MC, Bianco B, Barbosa CP, Christofolini DM. Are FSHR polymorphisms risk factors to premature ovarian insufficiency? Gynecol Endocrinol. 2015;31:663–6.CrossRefPubMedGoogle Scholar
  17. 17.
    Brauner R, Pierrepont S, Bignon-Topalovic J, McElreavey K, Bashamboo A. Etiology of primary ovarian insufficiency in a series young girls presenting at a pediatricendocrinology center. Eur J Pediatr. 2015;174:767–73.CrossRefPubMedGoogle Scholar
  18. 18.
    Al-ajoury R, Kassem E, Al-halabi B, Moassess F, Al-achkar W. Investigation of some genetic variations in BMP15 accompanied with premature ovarian failure (POF) in Syrian women. Middle East Fertil Soc J. 2015;20:91–6.CrossRefGoogle Scholar
  19. 19.
    Fonseca DJ, Ortega-Recalde O, Esteban-Perez C, Moreno-Ortiz H, Patiño LC, Bermúdez OM, et al. BMP15 c.-9C>G promoter sequence variant may contribute to the cause of non-syndromic premature ovarian failure. Reprod BioMed Online. 2014;29:627–33.CrossRefPubMedGoogle Scholar
  20. 20.
    Mayer A, Fouquet B, Pugeat M, Misrahi M. BMP15 “knockout-like” effect in familial premature ovarian insufficiency with persistent ovarian reserve. Clin Genet. 2017;92:208–12.CrossRefPubMedGoogle Scholar
  21. 21.
    Patiño LC, Walton KL, Mueller TD, Johnson KE, Stocker W, Richani D, et al. BMP15 mutations associated with primary ovarian insufficiency reduce expression, activity, or Synergy With GDF9. J Clin Endocrinol Metab. 2017;102:1009–19.PubMedGoogle Scholar
  22. 22.
    Auclair S, Rossetti R, Meslin C, Monestier O, Di Pasquale E, Pascal G, et al. Positive selection in bone morphogenetic protein 15 targets a natural mutation associated with primary ovarian insufficiency in human. PLoS One. 2013;8:e78199.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Barasoain M, Barrenetxea G, Huerta I, Télez M, Criado B, Arrieta I. Study of the genetic etiology of primary ovarian insufficiency: FMR1 Gene. Genes (Basel). 2016;7:E123.CrossRefGoogle Scholar
  24. 24.
    Xue M, Zheng J, Zhou Q, Hejtmancik JF, Wang Y, Li S. Novel FOXL2 mutations in two Chinese families with blepharophimosis-ptosis-epicanthus inversus syndrome. BMC Med Genet. 2015;16:73.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Nuovo S, Passeri M, Di Benedetto E, Calanchini M, Meldolesi I, Di Giacomo MC, et al. Characterization of endocrine features and genotype-phenotypes correlations in blepharophimosis-ptosis-epicanthus inversus syndrome type 1. J Endocrinol Investig. 2016;39:227–33.CrossRefGoogle Scholar
  26. 26.
    Li F, Chai P, Fan J, Wang X, Lu W, Li J, et al. A novel FOXL2 mutation implying blepharophimosis-ptosis-epicanthus inversus syndrome type I. Cell Physiol Biochem. 2018;45:203–11.CrossRefPubMedGoogle Scholar
  27. 27.
    Yang XW, He WB, Gong F, Li W, Li XR, Zhong CG, et al. Novel FOXL2 mutations cause blepharophimosisptosis-epicanthus inversus syndrome with premature ovarian insufficiency. Mol Genet Genomic Med. 2018; 6:261–7.Google Scholar
  28. 28.
    Elzaiat M, Todeschini AL, Caburet S, Veitia RA. The genetic make-up of ovarian development and function: the focus on the transcription factor FOXL2. Clin Genet. 2017;91:173–82.CrossRefPubMedGoogle Scholar
  29. 29.
    Laven JS. Primary ovarian insufficiency. Semin Reprod Med. 2016;34:230–4.CrossRefPubMedGoogle Scholar
  30. 30.
    Settas N, Anapliotou M, Kanavakis E, Fryssira H, Sofocleous C, Dacou-Voutetakis C, et al. A novel FOXL2 gene mutation and BMP15 variants in a woman with primary ovarian insufficiency and blepharophimosis-ptosis-epicanthus inversus syndrome. Menopause. 2015;22:1264–8.CrossRefPubMedGoogle Scholar
  31. 31.
    Patiño LC, Silgado D, Laissue P. A potential functional association between mutant BMPR2 and primary ovarian insufficiency. Syst Biol Reprod Med. 2017;63:145–9.CrossRefPubMedGoogle Scholar
  32. 32.
    Miller SA, Dikes DD, Polesky HF. A simple salting out procedure for extracting DNA from human nucleated cells. Nucleic Acids Res. 1988;16:1215.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Takebayashi K, Takakura K, Wang HQ, Kimura F, Kasahara K, Noda Y. Mutation analysis of the growth differentiation factor-9 and 9B genes in patients with premature ovarian failure and polycystic ovary syndrome. Fert Steril. 2000;74:976–9.CrossRefGoogle Scholar
  34. 34.
    Doherty E, Pakarinen P, Tiitinen A, Kiilavuori A, Huhtaniemi I, Forrest S, et al. A novel mutation in the FSH receptor inhibiting signal transduction and causing primary ovarian failure. J Clin Endocrinol Metab. 2002;87:1151–5.CrossRefPubMedGoogle Scholar
  35. 35.
    Wang J, Liu J, Zhang Q. FOXL2 mutations in Chinese patients with blepharophimosis-ptosis-epicanthus inversus syndrome. Mol Vis. 2007;13:108–13.PubMedPubMedCentralGoogle Scholar
  36. 36.
    Zhao H, Qin Y, Kovanci E, Simpson JL, Chen ZJ, Rajkovic A. Analyses of GDF9 mutation in 100 Chinese women with premature ovarian failure. Fertil Steril. 2007;88:1474–6.CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Katari S, Wood-Trageser MA, Jiang H, Kalynchuk E, Muzumdar R, Yatsenko SA, et al. Novel inactivating mutation of the FSH receptor in two siblings of Indian origin with premature ovarian failure. J Clin Endocrinol Metab. 2015;100:2154–7.CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Sundblad V, Chiauzzi VA, Escobar ME, Dain L, Charreau EH. Screening of FSH receptor gene in Argentine women with premature ovarian failure (POF). Mol Cell Endocrinol. 2004;222:53–9.CrossRefPubMedGoogle Scholar
  39. 39.
    Woad KJ, Prendergast D, Winship IM, Shelling AN. FSH receptor gene variants are rarely associated with premature ovarian failure. Reprod BioMed Online. 2013;26:396–9.CrossRefPubMedGoogle Scholar
  40. 40.
    Ma L, Chen Y, Mei S, Liu C, Ma X, Li Y, et al. Single nucleotide polymorphisms in premature ovarian failure-associated genes in a Chinese Hui population. Mol Med Rep. 2015;12:2529–38.CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Ghezelayagh Z, Totonchi M, Zarei-Moradi S, Asadpour O, Maroufizadeh S, Eftekhari-Yazdi P, et al. The impact of genetic variation and gene expression level of the follicle-stimulating hormone receptor on ovarian reserve. Cell J. 2018;19:620–6.PubMedGoogle Scholar
  42. 42.
    Prakash GJ, Kanth VV, Shelling AN, Rozati R, Sujatha M. Absence of 566C>T mutation in exon 7 of the FSHR gene in Indian women with premature ovarian failure. Int J Gynaecol Obstet. 2009;105:265–6.CrossRefPubMedGoogle Scholar
  43. 43.
    Tong Y, Liao WX, Roy AC, Ng SC. Absence of mutations in the coding regions of follicle-stimulating hormone receptor gene in Singapore Chinese women with premature ovarian failure and polycystic ovary syndrome. Horm Metab Res. 2001;33:221–6.CrossRefPubMedGoogle Scholar
  44. 44.
    Kumar R, Alwani M, Kosta S, Kaur R, Agarwal S. BMP15 and GDF9 gene mutations in premature ovarian failure. J Reprod Infertil. 2017;18:185–9.PubMedPubMedCentralGoogle Scholar
  45. 45.
    Ni F, Wen Q, Wang B, Zhou S, Wang J, Mu Y, et al. Mutation analysis of FOXL2 gene in Chinese patients with premature ovarian failure. Gynecol Endocrinol. 2010;26:246–9.CrossRefPubMedGoogle Scholar
  46. 46.
    Laissue P, Lakhal B, Benayoun BA, Dipietromaria A, Braham R, Elghezal H, et al. Functional evidence implicating FOXL2 in non-syndromic premature ovarian failure and in the regulation of the transcription factor OSR2. J Med Genet. 2009;46:455–7.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.CONACyT Research Fellow-Centro de Biotecnología Genómica, Instituto Politécnico NacionalLaboratorio de Medicina de ConservaciónReynosaMexico
  2. 2.División de Genética, Centro de Investigación Biomédica de Occidente, Centro Médico Nacional de Occidente, Laboratorio de Bioquímica 1BInstituto Mexicano del Seguro SocialGuadalajaraMexico
  3. 3.Dirección de Educación e Investigación en Salud, UMAE, Hospital de Gineco-Obstretricia, Centro Médico Nacional de OccidenteInstituto Mexicano del Seguro SocialGuadalajaraMexico

Personalised recommendations