Mode of conception does not affect fetal or placental growth parameters or ratios in early gestation or at delivery
- 13 Downloads
Abstract
Purpose
Ratio of fetal weight to placenta size varies by mode of conception (fertility treatments utilized) in animals. Our objective was to assess whether fertility treatments also affect these ratios in humans.
Methods
In this retrospective study, we assessed two cohorts: (a) early gestation cohort, women with singleton pregnancies who underwent first trimester vaginal ultrasound and (b) delivered cohort, women who delivered a live-born, singleton infant with placenta disposition to pathology. Crown rump length (CRL) and estimated placental volume (EPV) were calculated from first trimester ultrasound images using a validated computation. Infant birth weight (BW), pregnancy data, placental weight (PW), and placental histopathology were collected. Fetal growth-to-placental weight ratios (CRL/EPV; BW/PW) and placentas were compared by mode of conception. Linear regression was used to adjust for confounding variables.
Results
Two thousand one hundred seventy patients were included in the early gestation cohort and 1443 in the delivered cohort. Of the early gestation cohort (a), 85.4% were spontaneous conceptions, 5.9% Non-IVF Fertility (NIFT), and 8.7% IVF. In the delivered cohort (b), 92.4% were spontaneous, 2.1% NIFT, and 80 5.5% IVF. There were no significant differences between fetal growth-to-placental weight parameters, ratios, and neonatal birth measurements based on mode of conception. Placenta accreta was significantly higher in the patients receiving fertility treatments (1.2 versus 3.6%, p < 0.05).
Conclusions
Mode of conception does not appear to influence fetal growth-to-placental weight ratios throughout gestation. In addition, findings in animal models may not always translate into human studies of infertility treatment outcomes.
Keywords
Fertility treatment Crown rump length Estimated placental volume Birth weight Placental weightNotes
Compliance with ethical standards
The Institutional Review Board of Cedars-Sinai Medical Center in Los Angeles approved the study.
References
- 1.Centers for Disease Control and Prevention. Fertility Clinic Success Rates Report. Retrieved from https://www.cdcgov/art/artdata/indexhtml 2015.
- 2.Schieve LA, Devine O, Boyle CA, Petrini JR, Warner L. Estimation of the contribution of non-assisted reproductive technology ovulation stimulation fertility treatments to US singleton and multiple births. Am J Epidemiol. 2009;170:1396–407.CrossRefPubMedGoogle Scholar
- 3.Klemetti R, Gissler M, Sevon T, Koivurova S, Ritvanen A, Hemminki E. Children born after assisted fertilization have an increased rate of major congenital anomalies. Fertil Steril. 2005;84(5):1300–7. https://doi.org/10.1016/j.fertnstert.2005.03.085.CrossRefPubMedGoogle Scholar
- 4.Shevell T, Malone FD, Vidaver J, Porter TF, Luthy DA, Comstock CH, et al. Assisted reproductive technology and pregnancy outcome. Obstet Gynecol. 2005;106(5 Pt 1):1039–45. https://doi.org/10.1097/01.AOG.0000183593.24583.7c.CrossRefPubMedGoogle Scholar
- 5.Jackson RA, Gibson KA, Wu YW, Croughan MS. Perinatal outcomes in singletons following in vitro fertilization: a meta-analysis. Obstet Gynecol. 2004;103(3):551–63. https://doi.org/10.1097/01.aog.0000114989.84822.51.CrossRefPubMedGoogle Scholar
- 6.Rimm AA, Katayama AC, Diaz M, Katayama KP. A meta-analysis of controlled studies comparing major malformation rates in IVF and ICSI infants with naturally conceived children. J Assist Reprod Genet. 2004;21(12):437–43.CrossRefPubMedPubMedCentralGoogle Scholar
- 7.Hansen M, Kurinczuk JJ, Bower C, Webb S. The risk of major birth defects after intracytoplasmic sperm injection and in vitro fertilization. N Engl J Med. 2002;346(10):725–30. https://doi.org/10.1056/NEJMoa010035.CrossRefPubMedGoogle Scholar
- 8.Stromberg B, Dahlquist G, Ericson A, Finnstrom O, Koster M, Stjernqvist K. Neurological sequelae in children born after in-vitro fertilisation: a population-based study. Lancet. 2002;359(9305):461–5. https://doi.org/10.1016/S0140-6736(02)07674-2.CrossRefPubMedGoogle Scholar
- 9.Schieve LA, Meikle SF, Ferre C, Peterson HB, Jeng G, Wilcox LS. Low and very low birth weight in infants conceived with use of assisted reproductive technology. N Engl J Med. 2002;346(10):731–7. https://doi.org/10.1056/NEJMoa010806.CrossRefPubMedGoogle Scholar
- 10.Verlaenen H, Cammu H, Derde MP, Amy JJ. Singleton pregnancy after in vitro fertilization: expectations and outcome. Obstet Gynecol. 1995;86(6):906–10. https://doi.org/10.1016/0029-7844(95)00322-I.CrossRefPubMedGoogle Scholar
- 11.Kroener L, Wang ET, Pisarska MD. Predisposing factors to abnormal first trimester placentation and the impact on fetal outcomes. Semin Reprod Med. 2016;34(1):27–35.CrossRefPubMedGoogle Scholar
- 12.Delle Piane L, Lin W, Liu X, Donjacour A, Minasi P, Revelli A, et al. Effect of the method of conception and embryo transfer procedure on mid-gestation placenta and fetal development in an IVF mouse model. Hum Reprod. 2010;25:2039–46.CrossRefPubMedPubMedCentralGoogle Scholar
- 13.Bloise E, Lin W, Liu X, Simbulan R, Kolahi KS, Petraglia F, et al. Impaired placental nutrient transport in mice generated by in vitro fertilization. Endocrinology. 2012;153:3457–67.CrossRefPubMedPubMedCentralGoogle Scholar
- 14.Feuer SK, Liu X, Donjacour A, Lin W, Simbulan RK, Giritharan G, et al. Use of a mouse in vitro fertilization model to understand the developmental origins of health and disease hypothesis. Endocrinology. 2014;155:1956–69.CrossRefPubMedPubMedCentralGoogle Scholar
- 15.Johnson MR, Riddle AF, Grudzinskas JG, Sharma V, Collins WP, Nicolaides KH. Reduced circulating placental protein concentrations during the first trimester are associated with preterm labour and low birth weight. Hum Reprod. 1993;8:1942–7.CrossRefPubMedGoogle Scholar
- 16.Plasencia W, Akolekar R, Dagklis T, Veduta A, Nicolaides KH. Placental volume at 11-13 weeks’ gestation in the prediction of birth weight percentile. Fetal Diagn Ther. 2011;30:23–8.CrossRefPubMedGoogle Scholar
- 17.David AL, Jauniaux E. Ultrasound and endocrinological markers of first trimester placentation and subsequent fetal size. Placenta. 2016;40:29–33.CrossRefPubMedGoogle Scholar
- 18.Hafner E, Metzenbauer M, Stumpflen I, Waldhor T. Measurement of placental bed vascularization in the first trimester, using 3D-power-Doppler, for the detection of pregnancies at-risk for fetal and maternal complications. Placenta. 2013;34:892–8.CrossRefPubMedGoogle Scholar
- 19.Suri S, Muttukrishna S, Jauniaux E. 2D-ultrasound and endocrinologic evaluation of placentation in early pregnancy and its relationship to fetal birthweight in normal pregnancies and pre-eclampsia. Placenta. 2013;34:745–50.CrossRefPubMedGoogle Scholar
- 20.Hafner E, Metzenbauer M, Stumpflen I, Waldhor T, Philipp K. First trimester placental and myometrial blood perfusion measured by 3D power Doppler in normal and unfavourable outcome pregnancies. Placenta. 2010;31:756–63.CrossRefPubMedGoogle Scholar
- 21.Savasi VM, Mandia L, Laoreti A, Ghisoni L, Duca P, Cetin I. First trimester placental markers in oocyte donation pregnancies. Placenta. 2015;36(8):921–5.CrossRefPubMedGoogle Scholar
- 22.de Waal E, Vrooman LA, Fischer E, Ord T, Mainigi MA, Coutifaris C, et al. The cumulative effect of assisted reproduction procedures on placental development and epigenetic perturbations in a mouse model. Hum Mol Genet. 2015;24(24):6975–85.PubMedPubMedCentralGoogle Scholar
- 23.Churchill SJWE, Akhlaghpour M, Goldstein EH, Eschevarria D, Greene N, Macer M, et al. Mode of conception does not appear to affect placental volume in the first trimester. Fertil Steril. 2017;107(6):1341–7. e1CrossRefPubMedGoogle Scholar
- 24.Rifouna MS, Reus AD, Koning AH, van der Spek PJ, Exalto N, Steegers EA, et al. First trimester trophoblast and placental bed vascular volume measurements in IVF or IVF/ICSI pregnancies. Hum Reprod. 2014;29:2644–9.CrossRefPubMedGoogle Scholar
- 25.Jauniaux E, Englert Y, Vanesse M, Hiden M, Wilkin P. Pathologic features of placentas from singleton pregnancies obtained by in vitro fertilization and embryo transfer. Obstet Gynecol. 1990;76(1):61–4.PubMedGoogle Scholar
- 26.Gavriil P, Jauniaux E, Leroy F. Pathologic examination of placentas from singleton and twin pregnancies obtained after in vitro fertilization and embryo transfer. Pediatr Pathol. 1993;13(4):453–62.CrossRefPubMedGoogle Scholar
- 27.Poon LC, Karagiannis G, Leal A, Romero XC, Nicolaides KH. Hypertensive disorders in pregnancy: screening by uterine artery Doppler imaging and blood pressure at 11–13 weeks. Ultrasound Obstet Gynecol. 2009;34(5):497–502.CrossRefPubMedGoogle Scholar
- 28.Schuchter K, Metzenbauer M, Hafner E, Philipp K. Uterine artery Doppler and placental volume in the first trimester in the prediction of pregnancy complications. Ultrasound Obstet Gynecol. 2001;18(6):590–2.CrossRefPubMedGoogle Scholar
- 29.Reus AD, El-Harbachi H, Rousian M, Willemsen SP, Steegers-Theunissen RP, Steegers EA, et al. Early first-trimester trophoblast volume in pregnancies that result in live birth or miscarriage. Ultrasound Obstet Gynecol. 2013;42(5):577–84.CrossRefPubMedGoogle Scholar
- 30.Azpurua H, Funai EF, Coraluzzi LM, Doherty LF, Sasson IE, Kliman M, et al. Determination of placental weight using two-dimensional sonography and volumetric mathematic modeling. Am J Perinatol. 2010;27:151–5.CrossRefPubMedGoogle Scholar
- 31.Schwartz N, Sammel MD, Leite R, Parry S. First-trimester placental ultrasound and maternal serum markers as predictors of small-for-gestational-age infants. Am J Obstet Gynecol. 2014;211:253.e1–8.CrossRefGoogle Scholar
- 32.Schwartz N, Wang E, Parry S. Two-dimensional sonographic placental measurements in the prediction of small-for-gestational-age infants. Ultrasound Obstet Gynecol. 2012;40:674–9.CrossRefPubMedGoogle Scholar
- 33.Hafner E, Philipp T, Schuchter K, Dillinger-Paller B, Philipp K, Bauer P. Second-trimester measurements of placental volume by three-dimensional ultrasound to predict small-for-gestational-age infants. Ultrasound Obstet Gynecol. 1998;12:97–102.CrossRefPubMedGoogle Scholar
- 34.Pandey S, Shetty A, Hamilton M, Bhattacharya S, Maheshwari A. Obstetric and perinatal outcomes in singleton pregnancies resulting from IVF/ICSI: a systematic review and meta-analysis. Hum Reprod Update. 2012;18(5):485–503.CrossRefPubMedGoogle Scholar
- 35.McDonald SD, Han Z, Mulla S, Murphy KE, Beyene J, Ohlsson A. Knowledge synthesis group. Preterm birth and low birth weight among in vitro fertilization singletons: a systematic review and meta-analyses. Eur J Obstet Gynecol Reprod Biol. 2009;46(2):138–48.CrossRefGoogle Scholar
- 36.Alexander GR, Himes JH, Kaufman RB, Mor J, Kogan M. A United States national reference for fetal growth. Obstet Gynecol. 1996;87(2):163–8.CrossRefPubMedGoogle Scholar
- 37.Williams LA, Evans SF, Newnham JP. Prospective cohort study of factors influencing the relative weights of the placenta and the newborn infant. BMJ. 1997;314(7098):1864–8.CrossRefPubMedPubMedCentralGoogle Scholar
- 38.Bukowski R, Hansen NI, Pinar H, Willinger M, Reddy UM, Parker CB, et al. Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD) stillbirth collaborative research network (SCRN). Altered fetal growth, placental abnormalities, and stillbirth. PLoS One. 2017;12(8):e0182874.CrossRefPubMedPubMedCentralGoogle Scholar
- 39.Chang YL, Chang SD, Chao AS, Hsieh PC, Wang CN, Tseng LH. The individual fetal weight/estimated placental weight ratios in monochorionic twins with selective growth restriction. Prenat Diagn. 2008;28(3):217–21.CrossRefPubMedGoogle Scholar
- 40.Souza MA, de Lourdes Brizot M, Biancolin SE, Schultz R, de Carvalho MHB, Francisco RPV, et al. Placental weight and birth weight to placental weight ratio in monochorionic and dichorionic growth-restricted and non-growth-restricted twins. Clinics (Sao Paulo). 2017;72(5):265–71.CrossRefGoogle Scholar
- 41.Gloria-Bottini F, Neri A, Coppeta L, Magrini A, Bottini E. Correlation between birth weight and placental weight in healthy and diabetic puerperae. Taiwan J Obstet Gynecol. 2016;55(5):697–9.CrossRefPubMedGoogle Scholar
- 42.Risnes KR, Romundstad PR, Nilsen TI, Eskild A, Vatten LJ. Placental weight relative to birth weight and long-term cardiovascular mortality: findings from a cohort of 31,307 men and women. Am J Epidemiol. 2009;170:622e31.CrossRefGoogle Scholar
- 43.Shehata F, Levin I, Shrim A, Ata B, Weisz B, Gamzu R, et al. Placenta/birth weight ratio and perinatal outcome: a retrospective cohort analysis. BJOG. 2011;118(6):741–7.CrossRefPubMedGoogle Scholar
- 44.van Uitert EM, van der Elst-Otte N, Wilbers JJ, Exalto N, Willemsen SP, Eilers PH, et al. Periconception maternal characteristics and embryonic growth trajectories: the Rotterdam Predict study. Hum Reprod. 2013;28(12):3188–96.CrossRefPubMedGoogle Scholar
- 45.Esh-Broder E, Ariel I, Abas-Bashir N, Bdolah Y, Celnikier DH. Placenta accreta is associated with IVF pregnancies: a retrospective chart review. BJOG. 2011;118:1084–9.CrossRefPubMedGoogle Scholar
- 46.Fitzpatrick KE, Sellers S, Spark P, Kurinczuk JJ, Brocklehurst P, Knight M. Incidence and risk factors for placenta accreta/increta/percreta in the UK: a national case-control study. PLoS One. 2012;7:e52893.CrossRefPubMedPubMedCentralGoogle Scholar
- 47.Hayashi M, Nakai A, Satoh S, Matsuda Y. Adverse obstetric and perinatal outcomes of singleton pregnancies may be related to maternal factors associated with infertility rather than the type of assisted reproductive technology procedure used. Fertil Steril. 2012;98:922–8.CrossRefPubMedGoogle Scholar
- 48.Ishishara O, Araki R, Kuwahara A, Itakura A, Saito H, Adamson G. Impact of frozen-thawed single-blastocyst transfer on maternal and neonatal outcome: an analysis of 277,042 single-embryo transfer cycles from 2008 to 2010 in Japan. Fertil Steril. 2014;101:128–33.CrossRefGoogle Scholar
- 49.Kaser DJ, Melamed A, Bormann CL, Myers DE, Missmer SA, Walsh BW, et al. Cryopreserved embryo transfer is an independent risk factor for placenta accreta. Fertil Steril. 2015;103(5):1176–84.e2.CrossRefPubMedGoogle Scholar