Genetic and epigenetic variations associated with idiopathic recurrent pregnancy loss
- 229 Downloads
Abstract
Recurrent pregnancy loss (RPL) is a reproductive disorder defined as two or more successive and spontaneous pregnancy losses (before 20 weeks of gestation), which affects approximately 1–2% of couples. At present, the causes of RPL remain unknown in a considerable number of cases, leading to complications in treatment and high levels of stress in couples. Idiopathic recurrent pregnancy loss (iRPL) has become one of the more complicated reproductive problems worldwide due to the lack of information about its etiology, which limits the counseling and treatment of patients. For that reason, iRPL requires further study of novel factors to provide scientific information for determining clinical prevention and targeted strategies. The aim of this study is to describe the most recent and promising progress in the identification of potential genetic and epigenetic risk factors for iRPL, expanding the genetic etiology of the disease.
Keywords
Epigenetic Genetic Idiopathic recurrent pregnancy loss Immune tolerance Thrombophilia Tissue remodelingNotes
Compliance with ethical standards
Conflict of interest
The authors declare that they have no conflicts of interest.
References
- 1.Ford HB, Schust DJ. Recurrent pregnancy loss: etiology, diagnosis, and therapy. Rev Obstet Gynecol. 2009;2:76–83.PubMedPubMedCentralGoogle Scholar
- 2.Jeve YB, Davies W. Evidence-based management of recurrent miscarriages. J Hum Reprod Sci. 2014;7:159–69. https://doi.org/10.4103/0974-1208.142475.CrossRefPubMedPubMedCentralGoogle Scholar
- 3.Saravelos SH, Li T-C. Unexplained recurrent miscarriage: how can we explain it? Hum Reprod. 2012;27:1882–6. https://doi.org/10.1093/humrep/des102.CrossRefPubMedGoogle Scholar
- 4.Sheth FJ, Liehr T, Kumari P, Akinde R, Sheth HJ, Sheth JJ. Chromosomal abnormalities in couples with repeated fetal loss: an Indian retrospective study. Indian J Hum Genet. 2013;19:415–22. https://doi.org/10.4103/0971-6866.124369.CrossRefPubMedPubMedCentralGoogle Scholar
- 5.Ocak Z, Özlü T, Ozyurt O. Association of recurrent pregnancy loss with chromosomal abnormalities and hereditary thrombophilias. Afr Health Sci. 2013;13:447–52. https://doi.org/10.4314/ahs.v13i2.35.PubMedPubMedCentralGoogle Scholar
- 6.Asgari A, Ghahremani S, Saeedi S, Kamrani E. The study of chromosomal abnormalities and heteromorphism in couples with 2 or 3 recurrent abortions in Shahid Beheshti Hospital of Hamedan. Iran J Reprod Med. 2013;11:201–8.PubMedPubMedCentralGoogle Scholar
- 7.El-Dahtory FAM. Chromosomal abnormalities as a cause of recurrent abortions in Egypt. Indian J Hum Genet. 2011;17:82–4. https://doi.org/10.4103/0971-6866.86186.CrossRefPubMedPubMedCentralGoogle Scholar
- 8.Marquard K, Westphal LM, Milki AA, Lathi RB. Etiology of recurrent pregnancy loss in women over the age of 35 years. Fertil Steril. 2010;94:1473–7. https://doi.org/10.1016/j.fertnstert.2009.06.041.CrossRefPubMedGoogle Scholar
- 9.Hodes-Wertz B, Grifo J, Ghadir S, Kaplan B, Laskin CA, Glassner M, et al. Idiopathic recurrent miscarriage is caused mostly by aneuploid embryos. Fertil Steril. 2012;98:675–80. https://doi.org/10.1016/j.fertnstert.2012.05.025.CrossRefPubMedGoogle Scholar
- 10.McCoy RC, Demko ZP, Ryan A, Banjevic M, Hill M, Sigurjonsson S, et al. Evidence of selection against complex mitotic-origin aneuploidy during preimplantation development. PLoS Genet. 2015;11:e1005601. https://doi.org/10.1371/journal.pgen.1005601.CrossRefPubMedPubMedCentralGoogle Scholar
- 11.Bolor H, Mori T, Nishiyama S, Ito Y, Hosoba E, Inagaki H, et al. Mutations of the SYCP3 gene in women with recurrent pregnancy loss. Am J Hum Genet. 2009;84:14–20. https://doi.org/10.1016/j.ajhg.2008.12.002.CrossRefPubMedPubMedCentralGoogle Scholar
- 12.Sazegari A, Kalantar SM, Pashaiefar H, Mohtaram S, Honarvar N, Feizollahi Z, et al. The T657C polymorphism on the SYCP3 gene is associated with recurrent pregnancy loss. J Assist Reprod Genet. 2014;31:1377–81. https://doi.org/10.1007/s10815-014-0272-6.CrossRefPubMedPubMedCentralGoogle Scholar
- 13.Miyamoto T, Minase G, Shin T, Ueda H, Okada H, Sengoku K. Human male infertility and its genetic causes. Reprod Med Biol. 2017;16:81–8. https://doi.org/10.1002/rmb2.12017.CrossRefPubMedPubMedCentralGoogle Scholar
- 14.Stouffs K, Vandermaelen D, Tournaye H, Liebaers I, Lissens W. Mutation analysis of three genes in patients with maturation arrest of spermatogenesis and couples with recurrent miscarriages. Reprod BioMed Online. 2011;22:65–71. https://doi.org/10.1016/j.rbmo.2010.08.004.CrossRefPubMedGoogle Scholar
- 15.Blasco MA. Telomeres and human disease: ageing, cancer and beyond. Nat Rev Genet. 2005;6:611–22. https://doi.org/10.1038/nrg1656.CrossRefPubMedGoogle Scholar
- 16.Thilagavathi J, Mishra SS, Kumar M, Vemprala K, Deka D, Dhadwal V, et al. Analysis of telomere length in couples experiencing idiopathic recurrent pregnancy loss. J Assist Reprod Genet. 2013;30:793–8. https://doi.org/10.1007/s10815-013-9993-1.CrossRefPubMedPubMedCentralGoogle Scholar
- 17.Hanna CW, Bretherick KL, Gair JL, Fluker MR, Stephenson MD, Robinson WP. Telomere length and reproductive aging. Hum Reprod. 2009;24:1206–11. https://doi.org/10.1093/humrep/dep007.CrossRefPubMedPubMedCentralGoogle Scholar
- 18.Zidi-Jrah I, Hajlaoui A, Mougou-Zerelli S, Kammoun M, Meniaoui I, Sallem A, et al. Relationship between sperm aneuploidy, sperm DNA integrity, chromatin packaging, traditional semen parameters, and recurrent pregnancy loss. Fertil Steril. 2015;105:58–64. https://doi.org/10.1016/j.fertnstert.2015.09.041. CrossRefPubMedGoogle Scholar
- 19.Bareh GM, Jacoby E, Binkley P, Chang T-CA, Schenken RS, Robinson RD. Sperm deoxyribonucleic acid fragmentation assessment in normozoospermic male partners of couples with unexplained recurrent pregnancy loss: a prospective study. Fertil Steril. 2016;105:329–36.e1. https://doi.org/10.1016/j.fertnstert.2015.10.033.CrossRefPubMedGoogle Scholar
- 20.Kumar K, Deka D, Singh A, Mitra DK, Vanitha BR, Dada R. Predictive value of DNA integrity analysis in idiopathic recurrent pregnancy loss following spontaneous conception. J Assist Reprod Genet. 2012;29:861–7. https://doi.org/10.1007/s10815-012-9801-3.CrossRefPubMedPubMedCentralGoogle Scholar
- 21.Imam SN, Shamsi MB, Kumar K, Deka D, Dada R. Idiopathic recurrent pregnancy loss: role of paternal factors; a pilot study. J Reprod Infertil. 2011;12:267–76.PubMedPubMedCentralGoogle Scholar
- 22.Ramasamy R, Scovell JM, Kovac JR, Cook PJ, Lamb DJ, Lipshultz LI. Fluorescence in situ hybridization detects increased sperm aneuploidy in men with recurrent pregnancy loss. Fertil Steril. 2015;103:906–9.e1. https://doi.org/10.1016/j.fertnstert.2015.01.029.CrossRefPubMedPubMedCentralGoogle Scholar
- 23.Morales R, Lledó B, Ortiz JA, Ten J, Llácer J, Bernabeu R. Chromosomal polymorphic variants increase aneuploidies in male gametes and embryos. Syst Biol Reprod Med. 2016;62:317–24. https://doi.org/10.1080/19396368.2016.1212949.CrossRefPubMedGoogle Scholar
- 24.Agarwal S, Agarwal A, Khanna A, Singh K. Microdeletion of Y chromosome as a cause of recurrent pregnancy loss. J Hum Reprod Sci. 2015;8:159–64. https://doi.org/10.4103/0974-1208.165145.CrossRefPubMedPubMedCentralGoogle Scholar
- 25.Soleimanian S, Kalantar SM, Sheikhha MH, Zaimy MA, Rasti A, Fazli H. Association between Y-chromosome AZFc region micro-deletions with recurrent miscarriage. Iran J Reprod Med. 2013;11:431–4.PubMedPubMedCentralGoogle Scholar
- 26.Ghorbian S, Saliminejad K, Sadeghi MR, Javadi GR, Kamali K, Amirjannati N, et al. The association between Y chromosome microdeletion and recurrent pregnancy loss. Iran Red Crescent Med J. 2012;14:358–62.PubMedPubMedCentralGoogle Scholar
- 27.Wettasinghe TK, Jayasekara RW, Dissanayake VHW. Y chromosome microdeletions are not associated with spontaneous recurrent pregnancy loss in a Sinhalese population in Sri Lanka. Hum Reprod. 2010;25:3152–6. https://doi.org/10.1093/humrep/deq271.CrossRefPubMedGoogle Scholar
- 28.Krieg SA, Fan X, Hong Y, Sang Q-X, Giaccia A, Westphal LM, et al. Global alteration in gene expression profiles of deciduas from women with idiopathic recurrent pregnancy loss. Mol Hum Reprod. 2012;18:442–50. https://doi.org/10.1093/molehr/gas017.CrossRefPubMedPubMedCentralGoogle Scholar
- 29.Othman R, Omar MH, Shan LP, Shafiee MN, Jamal R, Mokhtar NM. Microarray profiling of secretory-phase endometrium from patients with recurrent miscarriage. Reprod Biol. 2012;12:183–99. https://doi.org/10.1016/S1642-431X(12)60085-0.CrossRefPubMedGoogle Scholar
- 30.Pereza N, Ostojić S, Smirčić A, Hodžić A, Kapović M, Peterlin B. The -2549 insertion/deletion polymorphism in the promoter region of the VEGFA gene in couples with idiopathic recurrent spontaneous abortion. J Assist Reprod Genet. 2015;32 https://doi.org/10.1007/s10815-015-0593-0.
- 31.Su M-T, Lin S-H, Chen Y-C. Genetic association studies of angiogenesis- and vasoconstriction-related genes in women with recurrent pregnancy loss: a systematic review and meta-analysis. Hum Reprod Update. 2011;17:803–12. https://doi.org/10.1093/humupd/dmr027.CrossRefPubMedGoogle Scholar
- 32.Su M-T, Lin S-H, Chen Y-C, Kuo P-L. Gene-gene interactions and gene polymorphisms of VEGFA and EG-VEGF gene systems in recurrent pregnancy loss. J Assist Reprod Genet. 2014;31:699–705. https://doi.org/10.1007/s10815-014-0223-2.CrossRefPubMedPubMedCentralGoogle Scholar
- 33.Cao Y, Zhang Z, Wang J, Miao M, Xu J, Shen Y, et al. Association between polymorphisms of prokineticin receptor (PKR1 rs4627609 and PKR2 rs6053283) and recurrent pregnancy loss. J Zhejiang Univ Sci B. 2016;17:218–24. https://doi.org/10.1631/jzus.B1500180.CrossRefPubMedPubMedCentralGoogle Scholar
- 34.Chen H, Yang X, Wang Z. Association between p53 Arg72Pro polymorphism and recurrent pregnancy loss: an updated systematic review and meta-analysis. Reprod BioMed Online. 2015;31:149–53. https://doi.org/10.1016/j.rbmo.2015.05.003.CrossRefPubMedGoogle Scholar
- 35.Cao Y, Zhang Z, Xu J, Wang J, Yuan W, Shen Y, et al. Genetic association studies of endothelial nitric oxide synthase gene polymorphisms in women with unexplained recurrent pregnancy loss: a systematic and meta-analysis. Mol Biol Rep. 2014;41:3981–9. https://doi.org/10.1007/s11033-014-3266-7.CrossRefPubMedGoogle Scholar
- 36.Pereza N, Ostojić S, Volk M, Kapović M, Peterlin B. Matrix metalloproteinases 1, 2, 3 and 9 functional single-nucleotide polymorphisms in idiopathic recurrent spontaneous abortion. Reprod BioMed Online. 2012;24:567–75. https://doi.org/10.1016/j.rbmo.2012.01.008.CrossRefPubMedGoogle Scholar
- 37.Su M-T, Lin S-H, Chen Y-C. Association of sex hormone receptor gene polymorphisms with recurrent pregnancy loss: a systematic review and meta-analysis. Fertil Steril. 2011;96:1435–44.e1. https://doi.org/10.1016/j.fertnstert.2011.09.030.CrossRefPubMedGoogle Scholar
- 38.Cao Y, Zhang Z, Zheng Y, Yuan W, Wang J, Liang H, et al. The association of idiopathic recurrent early pregnancy loss with polymorphisms in folic acid metabolism-related genes. Genes Nutr. 2014;9:402. https://doi.org/10.1007/s12263-014-0402-x.CrossRefPubMedPubMedCentralGoogle Scholar
- 39.Nair RR, Khanna A, Singh K. MTHFR C677T polymorphism and recurrent early pregnancy loss risk in north Indian population. Reprod Sci. 2012;19:210–5. https://doi.org/10.1177/1933719111417888.CrossRefPubMedGoogle Scholar
- 40.Yang Y, Luo Y, Yuan J, Tang Y, Xiong L, Xu M, et al. Association between maternal, fetal and paternal MTHFR gene C677T and A1298C polymorphisms and risk of recurrent pregnancy loss: a comprehensive evaluation. Arch Gynecol Obstet. 2015; https://doi.org/10.1007/s00404-015-3944-2.
- 41.Wu X, Zhao L, Zhu H, He D, Tang W, Luo Y. Association between the MTHFR C677T polymorphism and recurrent pregnancy loss: a meta-analysis. Genet Test Mol Biomarkers. 2012;16:806–11. https://doi.org/10.1089/gtmb.2011.0318.CrossRefPubMedGoogle Scholar
- 42.Chen H, Yang X, Lu M. Methylenetetrahydrofolate reductase gene polymorphisms and recurrent pregnancy loss in China: a systematic review and meta-analysis. Arch Gynecol Obstet. 2015;293:283–90. https://doi.org/10.1007/s00404-015-3894-8.CrossRefPubMedGoogle Scholar
- 43.Cao Y, Xu J, Zhang Z, Huang X, Zhang A, Wang J, et al. Association study between methylenetetrahydrofolate reductase polymorphisms and unexplained recurrent pregnancy loss: a meta-analysis. Gene. 2013;514:105–11. https://doi.org/10.1016/j.gene.2012.10.091.CrossRefPubMedGoogle Scholar
- 44.Udry S, Aranda FM, Latino JO, de Larrañaga GF. Paternal factor V Leiden and recurrent pregnancy loss: a new concept behind fetal genetics? J Thromb Haemost. 2014;12:666–9.CrossRefPubMedGoogle Scholar
- 45.Ozdemir O, Yenicesu GI, Silan F, Köksal B, Atik S, Ozen F, et al. Recurrent pregnancy loss and its relation to combined parental thrombophilic gene mutations. Genet Test Mol Biomarkers. 2012;16:279–86. https://doi.org/10.1089/gtmb.2011.0191.CrossRefPubMedGoogle Scholar
- 46.Gao H, Tao F. Prothrombin G20210A mutation is associated with recurrent pregnancy loss: a systematic review and meta-analysis update. Thromb Res. 2015;135:339–46. https://doi.org/10.1016/j.thromres.2014.12.001.CrossRefPubMedGoogle Scholar
- 47.Cao Y, Zhang Z, Xu J, Yuan W, Wang J, Huang X, et al. The association of idiopathic recurrent pregnancy loss with polymorphisms in hemostasis-related genes. Gene. 2013;530:248–52. https://doi.org/10.1016/j.gene.2013.07.080.CrossRefPubMedGoogle Scholar
- 48.Dendana M, Messaoudi S, Hizem S, Jazia KB, Almawi WY, Gris J-C, et al. Endothelial protein C receptor 1651C/G polymorphism and soluble endothelial protein C receptor levels in women with idiopathic recurrent miscarriage. Blood Coagul Fibrinolysis. 2012;23:30–4. https://doi.org/10.1097/MBC.0b013e328349cae5.CrossRefPubMedGoogle Scholar
- 49.Guerra-Shinohara EM, Bertinato JF, Tosin Bueno C, Cordeiro da Silva K, Burlacchini de Carvalho MH, Pulcineli Vieira Francisco R, et al. Polymorphisms in antithrombin and in tissue factor pathway inhibitor genes are associated with recurrent pregnancy loss. Thromb Haemost. 2012;108:693–700. https://doi.org/10.1160/TH12-03-0177.CrossRefPubMedGoogle Scholar
- 50.Elmahgoub IR, Afify RA, Abdel Aal AA, El-Sherbiny WS. Prevalence of coagulation factor XIII and plasminogen activator inhibitor-1 gene polymorphisms among Egyptian women suffering from unexplained primary recurrent miscarriage. J Reprod Immunol. 2014;103:18–22. https://doi.org/10.1016/j.jri.2014.02.007.CrossRefPubMedGoogle Scholar
- 51.Jeddi-Tehrani M, Torabi R, Mohammadzadeh A, Arefi S, Keramatipour M, Zeraati H, et al. Investigating association of three polymorphisms of coagulation factor XIII and recurrent pregnancy loss. Am J Reprod Immunol. 2010;64:212–7. https://doi.org/10.1111/j.1600-0897.2010.00838.x.CrossRefPubMedGoogle Scholar
- 52.Patil R, Ghosh K, Vora S, Shetty S. Inherited and acquired thrombophilia in Indian women experiencing unexplained recurrent pregnancy loss. Blood Cells Mol Dis. 2015;55:200–5. https://doi.org/10.1016/j.bcmd.2015.06.008.CrossRefPubMedGoogle Scholar
- 53.Jeon YJ, Kim YR, Lee BE, Choi YS, Kim JH, Shin JE, et al. Genetic association of five plasminogen activator inhibitor-1 (PAI-1) polymorphisms and idiopathic recurrent pregnancy loss in Korean women. Thromb Haemost. 2013;110:742–50. https://doi.org/10.1160/TH13-03-0242.CrossRefPubMedGoogle Scholar
- 54.Salazar Garcia MD, Sung N, Mullenix TM, Dambaeva S, Beaman K, Gilman-Sachs A, et al. Plasminogen activator inhibitor-1 4G/5G polymorphism is associated with reproductive failure: metabolic, hormonal, and immune profiles. Am J Reprod Immunol. 2016;76:70–81. https://doi.org/10.1111/aji.12516.CrossRefPubMedGoogle Scholar
- 55.Shakarami F, Akbari MT, Zare Karizi S. Association of plasminogen activator inhibitor-1 and angiotensin converting enzyme polymorphisms with recurrent pregnancy loss in Iranian women. Iran J Reprod Med. 2015;13:627–32.PubMedPubMedCentralGoogle Scholar
- 56.Fazelnia S, Farazmandfar T, Hashemi-Soteh SMB. Significant correlation of angiotensin converting enzyme and glycoprotein IIIa genes polymorphisms with unexplained recurrent pregnancy loss in north of Iran. Int J Reprod Biomed (Yazd, Iran). 2016;14:323–8.CrossRefGoogle Scholar
- 57.Su M-T, Lin S-H, Chen Y-C, Kuo P-L. Genetic association studies of ACE and PAI-1 genes in women with recurrent pregnancy loss. Thromb Haemost. 2012;109:8–15. https://doi.org/10.1160/TH12-08-0584.CrossRefPubMedGoogle Scholar
- 58.Kim JO, Lee WS, Lee BE, Jeon YJ, Kim YR, Jung SH, et al. Interleukin-1beta -511T>C genetic variant contributes to recurrent pregnancy loss risk and peripheral natural killer cell proportion. Fertil Steril. 2014;102:206–12.e5. https://doi.org/10.1016/j.fertnstert.2014.03.037.CrossRefPubMedGoogle Scholar
- 59.Zidan HE, Rezk NA, Alnemr AAA, Moniem MIA. Interleukin-17 and leptin genes polymorphisms and their levels in relation to recurrent pregnancy loss in Egyptian females. Immunogenetics. 2015;67:665–73. https://doi.org/10.1007/s00251-015-0876-8.CrossRefPubMedGoogle Scholar
- 60.Chen H, Yang X, Du J, Lu M. Interleukin-18 gene polymorphisms and risk of recurrent pregnancy loss: a systematic review and meta-analysis. J Obstet Gynaecol Res. 2015;41:1506–13. https://doi.org/10.1111/jog.12800.CrossRefPubMedGoogle Scholar
- 61.Qaddourah RH, Magdoud K, Saldanha FL, Mahmood N, Mustafa FE, Mahjoub T, et al. IL-10 gene promoter and intron polymorphisms and changes in IL-10 secretion in women with idiopathic recurrent miscarriage. Hum Reprod. 2014;29:1025–34. https://doi.org/10.1093/humrep/deu043.CrossRefPubMedGoogle Scholar
- 62.Bohiltea LC, Radoi EV. Interleukin-6 and interleukin-10 gene polymorphisms and recurrent pregnancy loss in Romanian population. Iran J Reprod Med. 2014;12:617–22.Google Scholar
- 63.Rasti Z, Nasiri M, Kohan L. The IL-6-634C/G polymorphism: a candidate genetic marker for the prediction of idiopathic recurrent pregnancy loss. Int J Reprod Biomed (Yazd, Iran). 2016;14:103–8.CrossRefGoogle Scholar
- 64.Magdoud K, Granados Herbepin V, Messaoudi S, Hizem S, Bouafia N, Almawi WY, et al. Genetic variation in TGFB1 gene and risk of idiopathic recurrent pregnancy loss. Mol Hum Reprod. 2013;19:438–43. https://doi.org/10.1093/molehr/gat012.CrossRefPubMedGoogle Scholar
- 65.Jang HG, Choi Y, Kim JO, Jeon YJ, Rah H, Cho SH, et al. Polymorphisms in tumor necrosis factor-alpha (-863C>A, -857C>T and +488G>A) are associated with idiopathic recurrent pregnancy loss in Korean women. Hum Immunol. 2016;77:506–11. https://doi.org/10.1016/j.humimm.2016.04.012.CrossRefPubMedGoogle Scholar
- 66.Nasiri M, Rasti Z. CTLA-4 and IL-6 gene polymorphisms: risk factors for recurrent pregnancy loss. Hum Immunol. 2016; https://doi.org/10.1016/j.humimm.2016.07.236.
- 67.Saxena D, Misra MK, Parveen F, Phadke SR, Agrawal S. The transcription factor Forkhead Box P3 gene variants affect idiopathic recurrent pregnancy loss. Placenta. 2015;36:226–31. https://doi.org/10.1016/j.placenta.2014.11.014.CrossRefPubMedGoogle Scholar
- 68.Dendana M, Hizem S, Magddoud K, Messaoudi S, Zammiti W, Nouira M, et al. Common polymorphisms in the P-selectin gene in women with recurrent spontaneous abortions. Gene. 2012;495:72–5. https://doi.org/10.1016/j.gene.2011.11.034.CrossRefPubMedGoogle Scholar
- 69.Jung YW, Jeon YJ, Rah H, Kim JH, Shin JE, Choi DH, et al. Genetic variants in microRNA machinery genes are associated [corrected] with idiopathic recurrent pregnancy loss risk. PLoS One. 2014;9:e95803. https://doi.org/10.1371/journal.pone.0095803.CrossRefPubMedPubMedCentralGoogle Scholar
- 70.Hu Y, Liu C-M, Qi L, He T-Z, Shi-Guo L, Hao C-J, et al. Two common SNPs in pri-miR-125a alter the mature miRNA expression and associate with recurrent pregnancy loss in a Han-Chinese population. RNA Biol. 2011;8:861–72. https://doi.org/10.4161/rna.8.5.16034.CrossRefPubMedGoogle Scholar
- 71.Hu Y, Huo Z-H, Liu C-M, Liu S-G, Zhang N, Yin K-L, et al. Functional study of one nucleotide mutation in pri-miR-125a coding region which related to recurrent pregnancy loss. PLoS One. 2014;9:e114781. https://doi.org/10.1371/journal.pone.0114781.CrossRefPubMedPubMedCentralGoogle Scholar
- 72.Su X, Hu Y, Li Y, Cao J-L, Wang X-Q, Ma X, et al. The polymorphism of rs6505162 in the MIR423 coding region and recurrent pregnancy loss. Reproduction. 2015;150:65–76. https://doi.org/10.1530/REP-15-0007.CrossRefPubMedGoogle Scholar
- 73.Rah H, Chung KW, Ko KH, Kim ES, Kim JO, Sakong JH, et al. miR-27a and miR-449b polymorphisms associated with a risk of idiopathic recurrent pregnancy loss. PLoS One. 2017;12:e0177160. https://doi.org/10.1371/journal.pone.0177160.CrossRefPubMedPubMedCentralGoogle Scholar
- 74.Banerjee P, Ghosh S, Dutta M, Subramani E, Khalpada J, Roychoudhury S, et al. Identification of key contributory factors responsible for vascular dysfunction in idiopathic recurrent spontaneous miscarriage. PLoS One. 2013;8:e80940. https://doi.org/10.1371/journal.pone.0080940.CrossRefPubMedPubMedCentralGoogle Scholar
- 75.Gonçalves RO, Fraga LR, Santos WVB, Carvalho AFL, Veloso Cerqueira BAV, Sarno M, et al. Association between the thrombophilic polymorphisms MTHFR C677T, Factor V Leiden, and prothrombin G20210A and recurrent miscarriage in Brazilian women. Genet Mol Res. 2016;15 https://doi.org/10.4238/gmr.15038156.
- 76.Comba C, Bastu E, Dural O, Yasa C, Keskin G, Ozsurmeli M, et al. Role of inflammatory mediators in patients with recurrent pregnancy loss. Fertil Steril. 2015;104:1467–74.e1. https://doi.org/10.1016/j.fertnstert.2015.08.011.CrossRefPubMedGoogle Scholar
- 77.Lee SK, Kim JY, Hur SE, Kim CJ, Na BJ, Lee M, et al. An imbalance in interleukin-17-producing T and Foxp3+ regulatory T cells in women with idiopathic recurrent pregnancy loss. Hum Reprod. 2011;26:2964–71. https://doi.org/10.1093/humrep/der301.CrossRefPubMedGoogle Scholar
- 78.Rull K, Nagirnaja L, Laan M. Genetics of recurrent miscarriage: challenges, current knowledge, future directions. Front Genet. 2012;3:34. https://doi.org/10.3389/fgene.2012.00034.CrossRefPubMedPubMedCentralGoogle Scholar
- 79.Lyon MF. Sex chromatin and gene action in the mammalian X-chromosome. Am J Hum Genet. 1962;14:135–48.PubMedPubMedCentralGoogle Scholar
- 80.Busque L, Paquette Y, Provost S, Roy D-C, Levine RL, Mollica L, et al. Skewing of X-inactivation ratios in blood cells of aging women is confirmed by independent methodologies. Blood. 2009;113:3472–4. https://doi.org/10.1182/blood-2008-12-195677.CrossRefPubMedPubMedCentralGoogle Scholar
- 81.Minks J, Robinson WP, Brown CJ. A skewed view of X chromosome inactivation. J Clin Invest. 2008;118:20–3. https://doi.org/10.1172/JCI34470.CrossRefPubMedGoogle Scholar
- 82.Kurzawińska G, Barlik M, Drews K, Różycka A, Seremak-Mrozikiewicz A, Ożarowski M, et al. Coexistence of ACE (I/D) and PAI-1 (4G/5G) gene variants in recurrent miscarriage in Polish population. Ginekol Pol. 2016;87:271–6. https://doi.org/10.17772/gp/62203.CrossRefPubMedGoogle Scholar
- 83.Mosaad YM, Abdel-Dayem Y, El-Deek BS, El-Sherbini SM. Association between HLA-E *0101 homozygosity and recurrent miscarriage in Egyptian women. Scand J Immunol. 2011;74:205–9. https://doi.org/10.1111/j.1365-3083.2011.02559.x.CrossRefPubMedGoogle Scholar
- 84.Sui Y, Chen Q, Sun X. Association of skewed X chromosome inactivation and idiopathic recurrent spontaneous abortion: a systematic review and meta-analysis. Reprod BioMed Online. 2015;31:140–8. https://doi.org/10.1016/j.rbmo.2015.05.007.CrossRefPubMedGoogle Scholar
- 85.Bock C, Beerman I, Lien W-H, Smith ZD, Gu H, Boyle P, et al. DNA methylation dynamics during in vivo differentiation of blood and skin stem cells. Mol Cell. 2012;47:633–47. https://doi.org/10.1016/j.molcel.2012.06.019.CrossRefPubMedPubMedCentralGoogle Scholar
- 86.Hanna CW, McFadden DE, Robinson WP. DNA methylation profiling of placental villi from karyotypically normal miscarriage and recurrent miscarriage. Am J Pathol. 2013;182:2276–84. https://doi.org/10.1016/j.ajpath.2013.02.021.CrossRefPubMedGoogle Scholar
- 87.Zhu Y, Lu H, Huo Z, Ma Z, Dang J, Dang W, et al. MicroRNA-16 inhibits feto-maternal angiogenesis and causes recurrent spontaneous abortion by targeting vascular endothelial growth factor. Sci Rep. 2016;6:35536. https://doi.org/10.1038/srep35536.CrossRefPubMedPubMedCentralGoogle Scholar
- 88.Wang L, Tang H, Xiong Y, Tang L. Differential expression profile of long noncoding RNAs in human chorionic villi of early recurrent miscarriage. Clin Chim Acta. 2017;464:17–23. https://doi.org/10.1016/j.cca.2016.11.001.CrossRefPubMedGoogle Scholar