Advertisement

Analysis of Plasmonic Gold Nanostar Arrays with the Optimum Sers Enhancement Factor on the Human Skin Tissue

  • S. GolmohammadiEmail author
  • M. Etemadi
Article
  • 1 Downloads

We analyze the performance of the surface-enhanced Raman spectroscopy (SERS) substrate based on high-density gold nanostar nanoparticle (GNS) arrays assembled on the gold film and embedded in the human skin tissue as a surrounding medium. A self-assembled monolayer (SAM) of 3-aminopropyltriethoxy silane (APTES) is used for immobilizing GNSs on the Au film. The GNS–Au film and GNS–GNS coupling in the gap regions and also the GNSs interparticle coupling at their branches are observed, so the GNS arrays show more field enhancements and the sensitivity of the GNS sensor can be increased further. When the SERS substrate based on the GNS arrays is excited by a 785-nm laser line, a maximum enhancement factor (EF) of 109 is observed. It is demonstrated that the normalized EF depends on the geometry of the GNSs, the thickness of the Au film, and the separation distance between the cores of the GNSs.

Keywords

nanostars biomaterials thin films surface plasmons plasmonics spectroscopy tissue diagnostics 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    L. Osinkina, T. Lohmuller, F. Jackel, and J. Feldmann, J. Phys. Chem. C, 117, 22198–22202 (2013).CrossRefGoogle Scholar
  2. 2.
    T. Vo-Dinh, A. M. Fales, G. D. Griffin, C. G. Khoury, Y. Liu, H. Ngo, S. J. Norton, J. K. Register, H.-N. Wang, and H. Yuan, Nanoscale, 5, 10127–10140 (2013).ADSCrossRefGoogle Scholar
  3. 3.
    K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, The Optical Properties of Metal Nanoparticles: The Influence of Size, Shape, and Dielectric Environment, ACS Publications (2003).Google Scholar
  4. 4.
    E. Boisselier and D. Astruc, Chem. Soc. Rev., 38, 1759–1782 (2009).CrossRefGoogle Scholar
  5. 5.
    M. V. Park, A. M. Neigh, J. P. Vermeulen, L. J. de la Fonteyne, H. W. Verharen, J. J. Briedé, H. van Loveren, and W. H. de Jong, Biomaterials, 32, 9810–9817 (2011).CrossRefGoogle Scholar
  6. 6.
    G. Bisker and D. Yelin, J. Opt. Soc. Am. B, 29, 1383–1393 (2012).ADSCrossRefGoogle Scholar
  7. 7.
    M. Yang, X. Yang, and L. Huai, Appl. Phys. A: Mater. Sci. Process., 92, 367–370 (2008).ADSCrossRefGoogle Scholar
  8. 8.
    T. Pylaev, V. Khanadeev, B. Khlebtsov, L. Dykman, V. Bogatyrev, and N. Khlebtsov, Nanotechnology, 22, 285501 (2011).CrossRefGoogle Scholar
  9. 9.
    B. Khlebtsov, V. Khanadeev, I. Maksimova, G. Terentyuk, and N. Khlebtsov, Nanotechnol. Russ., 5, 454–468 (2010).CrossRefGoogle Scholar
  10. 10.
    M. Liu and P. Guyot-Sionnest, J. Phys. Chem. B, 109, 22192–22200 (2005).CrossRefGoogle Scholar
  11. 11.
    G. P. Kumar, J. Opt. Soc. Am. B, 29, 594–599 (2012).ADSCrossRefGoogle Scholar
  12. 12.
    C. L. Nehl, H. Liao, and J. H. Hafner, Nano Lett., 6, 683–688 (2006).ADSCrossRefGoogle Scholar
  13. 13.
    H. Yockell-Lelièvre, F. Lussier, and J.-F. Masson, J. Phys. Chem. C, 119, 28577–28585 (2015).CrossRefGoogle Scholar
  14. 14.
    N. Li, P. Zhao, and D. Astruc, Angew. Chem. Int. Ed., 53, 1756–1789 (2014).CrossRefGoogle Scholar
  15. 15.
    A. H. Gandjbakhche, Compt. Rend. Acad. Sci., Ser. IV Phys., 2, 1073–1089 (2001).Google Scholar
  16. 16.
    Y. Liu, H. Yuan, F. R. Kersey, J. K. Register, M. C. Parrott, and T. Vo-Dinh, Sensors, 15, 3706–3720 (2015).CrossRefGoogle Scholar
  17. 17.
    H. Yuan, C. G. Khoury, H. Hwang, C. M. Wilson, G. A. Grant, and T. Vo-Dinh, Nanotechnology, 23, 075102 (2012).ADSCrossRefGoogle Scholar
  18. 18.
    P. Yang, J. Zheng, Y. Xu, Q. Zhang, and L. Jiang, Adv. Mater., 28, 10508–10517 (2016).CrossRefGoogle Scholar
  19. 19.
    T. K. Lee and S. K. Kwak, J. Phys. Chem. C, 118, 5881–5888 (2014).CrossRefGoogle Scholar
  20. 20.
    J. Lee, B. Hua, S. Park, M. Ha, Y. Lee, Z. Fan, and H. Ko, Nanoscale, 6, 616–623 (2014).ADSCrossRefGoogle Scholar
  21. 21.
    H. Yuan, J. K. Register, H.-N. Wang, A. M. Fales, Y. Liu, and T. Vo-Dinh, Anal. Bioanal. Chem., 405, 6165–6180 (2013).CrossRefGoogle Scholar
  22. 22.
    P. L. Stiles, J. A. Dieringer, N. C. Shah, and R. P. Van Duyne, Annu. Rev. Anal. Chem., 1, 601–626 (2008).CrossRefGoogle Scholar
  23. 23.
    M. Kerker, D.-S. Wang, and H. Chew, Appl. Opt., 19, 3373–3388 (1980).ADSCrossRefGoogle Scholar
  24. 24.
    J. Z. Zhang, J. Phys. Chem. Lett., 1, 686–695 (2010).CrossRefGoogle Scholar
  25. 25.
    C. Hrelescu, T. K. Sau, A. L. Rogach, F. Jäckel, and J. Feldmann, Appl. Phys. Lett., 94, 153113 (2009).ADSCrossRefGoogle Scholar
  26. 26.
    J. Hu, P.-C. Zheng, J.-H. Jiang, G.-L. Shen, R.-Q. Yu, and G.-K. Liu, Analyst, 135, 1084–1089 (2010).ADSCrossRefGoogle Scholar
  27. 27.
    Z. Zhang, Y. Wen, Y. Ma, J. Luo, X. Zhang, L. Jiang, and Y. Song, Appl. Phys. Lett., 98, 133704 (2011).ADSCrossRefGoogle Scholar
  28. 28.
    P. Taladriz-Blanco, N. J. Buurma, L. Rodríguez-Lorenzo, J. Pérez-Juste, L. M. Liz-Marzán, and P. Hervés, J. Mater. Chem., 21, 16880–16887 (2011).CrossRefGoogle Scholar
  29. 29.
    A. Saha, S. Palmal, and N. R. Jana, Nanoscale, 4, 6649–6657 (2012).ADSCrossRefGoogle Scholar
  30. 30.
    L. Fabris, M. Dante, T. Q. Nguyen, J. B. H. Tok, and G. C. Bazan, Adv. Funct. Mater., 18, 2518–2525 (2008).CrossRefGoogle Scholar
  31. 31.
    S. L. Kleinman, B. Sharma, M. G. Blaber, A.-I. Henry, N. Valley, R. G. Freeman, M. J. Natan, G. C. Schatz, and R. P. Van Duyne, J. Am. Chem. Soc., 135, 301–308 (2012).CrossRefGoogle Scholar
  32. 32.
    J. M. Romo-Herrera, R. A. Alvarez-Puebla, and L. M. Liz-Marzán, Nanoscale, 3, 1304–1315 (2011).ADSCrossRefGoogle Scholar
  33. 33.
    J.-H. Lee, J.-M. Nam, K.-S. Jeon, D.-K. Lim, H. Kim, S. Kwon, H. Lee, and Y. D. Suh, ACS Nano, 6, 9574–9584 (2012).CrossRefGoogle Scholar
  34. 34.
    A. D. S. Indrasekara, S. Meyers, S. Shubeita, L. Feldman, T. Gustafsson, and L. Fabris, Nanoscale, 6, 8891–8899 (2014).ADSCrossRefGoogle Scholar
  35. 35.
    H. R. Stuart and D. G. Hall, Phys. Rev. Lett., 80, 5663 (1998).ADSCrossRefGoogle Scholar
  36. 36.
    P. Nordlander, C. Oubre, E. Prodan, K. Li, and M. Stockman, Nano Lett., 4, 899–903 (2004).ADSCrossRefGoogle Scholar
  37. 37.
    A. Kravets, T. Borodinova, and V. Kravets, J. Opt. Soc. Am. B, 33, 302–307 (2016).ADSCrossRefGoogle Scholar
  38. 38.
    S. Piltan and D. Sievenpiper, J. Opt. Soc. Am. B, 35, 208–213 (2018).ADSCrossRefGoogle Scholar
  39. 39.
    P. B. Johnson and R.-W. Christy, Phys. Rev. B, 6, 4370 (1972).ADSCrossRefGoogle Scholar
  40. 40.
    A. Shiohara, S. M. Novikov, D. M. Solís, J. M. Taboada, F. Obelleiro, and L. M. Liz-Marzán, J. Phys. Chem. C, 119, 10836–10843 (2014).CrossRefGoogle Scholar
  41. 41.
    F. Tian, J. Conde, C. Bao, Y. Chen, J. Curtin, and D. Cui, Biomaterials, 106, 87–97 (2016).CrossRefGoogle Scholar
  42. 42.
    H. Ding, J. Q. Lu, W. A. Wooden, P. J. Kragel, and X.-H. Hu, Phys. Med. Biol., 51, 1479 (2006).CrossRefGoogle Scholar
  43. 43.
    T. Lister, P. A. Wright, and P. H. Chappell, J. Biomed. Opt., 17, 0909011–09090115 (2012).CrossRefGoogle Scholar
  44. 44.
    J. Le Grange, J. Markham, and C. Kurkjian, Langmuir, 9, 1749–1753 (1993).CrossRefGoogle Scholar
  45. 45.
    J. A. Howarter and J. P. Youngblood, Langmuir, 22, 11142–11147 (2006).CrossRefGoogle Scholar
  46. 46.
    S. Atta, T. V. Tsoulos, and L. Fabris, J. Phys. Chem. C, 120, 20749–20758 (2016).CrossRefGoogle Scholar
  47. 47.
    Q.-Q. Meng, X. Zhao, C.-Y. Lin, S.-J. Chen, Y.-C. Ding, and Z.-Y. Chen, Sensors, 17, 1846 (2017).CrossRefGoogle Scholar
  48. 48.
    A. Kossoy, V. Merk, D. Simakov, K. Leosson, S. Kéna-Cohen, and S. A. Maier, Adv. Opt. Mater., 3, 71–77 (2015).CrossRefGoogle Scholar
  49. 49.
    M. W. Knight, Y. Wu, J. B. Lassiter, P. Nordlander, and N. J. Halas, Nano Lett., 9, 2188–2192 (2009).ADSCrossRefGoogle Scholar
  50. 50.
    S.-Y. Chen, J. J. Mock, R. T. Hill, A. Chilkoti, D. R. Smith, and A. A. Lazarides, ACS Nano, 4, 6535–6546 (2010).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Engineering-Emerging TechnologiesUniversity of TabrizTabrizIran

Personalised recommendations