Advertisement

Information Properties of Halogen-Containing Media for Photothermoplastic Recording of Holograms

  • N. A. DavidenkoEmail author
  • I. I. Davidenko
  • D. G. Vyshnevsky
  • E. V. Mokrinskaya
  • A. K. Melnyk
  • V. V. Kravchenko
  • V. N. Ovdenko
  • V. A. Pavlov
  • N. G. Chuprina
Article

The effect of halogens in carbazolyl-containing oligomers on the information properties of recording media in the photothermoplastic method of recording holograms is studied. An increase of photosensitivity was observed for such media with halogens present in their composition. It was shown by photoactivated electron paramagnetic resonance that the lifetime of the photogenerated charge pairs is increased in the presence of halogens. This is due to the increased probability of photogeneration of charge pairs in the triplet state for the modified oligomers compared with their analogs. It is presumed that modification of the photoconductive polymers with halogens is one way of increasing their photosensitivity and for other practical applications (photovoltaics, molecular electronics).

Keywords

polymeric composite photothermoplastic method of hologram recording photoconductivity photogeneration electronic transport spin conversion 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. M. Schaffert, Electrophotography, Wiley, New York (1981)Google Scholar
  2. 2.
    N. A. Davidenko, Yu. P. Getmanchuk, E. V. Mokrinskaya, L. R. Kunitskaya, I. I. Davidenko, V. A. Pavlov, S. L. Studzinsky, and N. G. Chuprina, Appl. Opt., 53, No. 10, B242–B247 (2014).CrossRefGoogle Scholar
  3. 3.
    N. A. Davidenko, I. I. Davidenko, V. A. Pavlov, N. G. Chuprina, V. V. Kravchenko, N. N. Kuranda, E. V. Mokrinskaya, and S. L. Studzinsly, Appl. Opt., 57, No. 8, 1832–1837 (2018).ADSCrossRefGoogle Scholar
  4. 4.
    N. Davidenko, H. Mahdi, X. Zheng, I. Davidenko, V. Pavlov, N. Kuranda, N. Chuprina, S. Studzinsky, A. Pandya, H. Karia, S. Tajouri, M. Dervenis, C. Gergely, and A. Douplik, Proc. SPIE, 10612, 106120H (2018)Google Scholar
  5. 5.
    M. Nonnenmacher, M. P. O’Boyle, and H. K. Wickramasinghe, Appl. Phys. Lett., 58, 2921–2923 (1991).ADSCrossRefGoogle Scholar
  6. 6.
    I. P. Zherebtsov, T. A. Sagachenko, and V. P. Lopatinskii, Izv. Tomsk. Politekh. In-ta, 163, 25–33 (1970).Google Scholar
  7. 7.
    N. A. Davidenko, A. A. Ishchenko, L. I. Kostenko, N. G. Kuvshinsky, D. D. Mysyk, and R. D. Mysyk, FTP, 38, No. 5, 610–615 (2004) [N. A. Davidenko, A. A. Ishchenko, L. I. Kostenko, N. G. Kuvshinsky, D. D. Mysyk, and R. D. Mysyk, Semiconductors, 38, No. 5, 588–593 (2004)].ADSCrossRefGoogle Scholar
  8. 8.
    M. Pope and C. E. Swenberg, Electronic Processes in Organic Crystals, Clarendon Press, Oxford (1982).Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • N. A. Davidenko
    • 1
    Email author
  • I. I. Davidenko
    • 1
  • D. G. Vyshnevsky
    • 1
  • E. V. Mokrinskaya
    • 1
  • A. K. Melnyk
    • 2
  • V. V. Kravchenko
    • 3
  • V. N. Ovdenko
    • 1
  • V. A. Pavlov
    • 1
  • N. G. Chuprina
    • 1
  1. 1.Taras Shevchenko Kiev National UniversityKyivUkraine
  2. 2.Institute for Sorption and Endoecology ProblemsNational Academy of Sciences of UkraineKyivUkraine
  3. 3.L. M. Litvinenko Institute of Physical Organic Chemistry and Coal ChemistryNational Academy of Sciences of UkraineKyivUkraine

Personalised recommendations