Enhancement of Analytical Signal of Laser Induced Breakdown Spectroscopy by Deposition of Gold Nanoparticles on Analyzed Sample

  • V. V. KirisEmail author
  • N. V. Tarasenko
  • E. A. Nevar
  • M. I. Nedelko
  • E. A. Ershov-Pavlov
  • M. Kuzmanović
  • J. Savović

Efficiency of LIBS signal enhancement by deposition of gold nanoparticles prepared by laser ablation in acetone on the surface of the analyzed sample has been studied. Characteristics of laser plasma generated on steel surface before and after deposition of the nanoparticles are compared. It is found that deposition of nanoparticles increases plasma volume and lifetime, but does not affect erosion of the material. Deposition of nanoparticles results in the enhancement of spectral lines intensities depending on the zone of the plasma plume selected for analysis: signal enhancement grows with distance from the sample.


laser-induced breakdown spectroscopy nanoparticles spectral line intensity 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    D. W. Hahn and N. Omenetto, Appl. Spectrosc., 66, 347–419 (2012).ADSCrossRefGoogle Scholar
  2. 2.
    Y. Li, D. Tian, Y. Ding, G. Yang, K. Liu, C. Wang, and X. Han, Appl. Spectrosc. Rev., 53, 1–35 (2018).ADSCrossRefGoogle Scholar
  3. 3.
    V. A. Bobyrev, V. I. Boiko, F. V. Bunkin, V. S. Lukyanchuk, and Е. R. Tsarev, Izv. AN SSSR, 51, 1180–1187 (1987).Google Scholar
  4. 4.
    M. A. Fikiet, S. R. Khandasammy, E. Mistek, Y. Ahmed, L. Halmkov, J. Bueno, and I. K. Lednev, Spectrochim. Acta, A, 197, 255–260 (2018).ADSCrossRefGoogle Scholar
  5. 5.
    T. Ohta, M. Ito, T. Kotani, and T. Hattori, Appl. Spectrosc., 63, 555–558 (2009).ADSCrossRefGoogle Scholar
  6. 6.
    A. De Giacomo, R. Gaudiuso, C. Koral, and M. Dell’Aglio, Spectrochim. Acta, B, 98, 19–27 (2014).ADSCrossRefGoogle Scholar
  7. 7.
    L. Sládková, D. Prochazka, P. Pořízka, P. Škarková, M. Remešová, A. Hrdlička, K. Novotný , L. Čelko, and J. Kaiser, Spectrochim. Acta, B, 127, 48–55 (2017).ADSCrossRefGoogle Scholar
  8. 8.
    D. Dong, L. Jiao, X. Dua, and C. Zhao, Chem. Commun., 53, 4546–4549 (2017).CrossRefGoogle Scholar
  9. 9.
    F. Yang, L. Jiang, S. Wang, Z. Cao, L. Liu, M. Wang, and Y. Lu, Opt. Laser Technol., 93, 194–200 (2017).ADSCrossRefGoogle Scholar
  10. 10.
    C. Koral, M. Dell’Aglio, R. Gaudiuso, R. Alrifai, M. Torelli, and A. De Giacomo, Talanta, 182, 253–258 (2018).CrossRefGoogle Scholar
  11. 11.
    M. Dell’Aglio, R. Alrifai, and A. De Giacomo, Spectrochim. Acta, B, 148, 105–112 (2018).ADSCrossRefGoogle Scholar
  12. 12.
    M. A. Garcia, J. Phys. D: Appl. Phys., 44, 283001 (2011).CrossRefGoogle Scholar
  13. 13.
    A. M. El Sherbini and C. G. Parigger, Spectrochim. Acta, B, 116, 8–15 (2016).ADSCrossRefGoogle Scholar
  14. 14.
    K. K. Anoop, N. Verma, N. Joy, S. S. Harilal, and R. Philip, Phys. Plasmas, 25, 063304 (2018).ADSCrossRefGoogle Scholar
  15. 15.
    V. S. Burakov, N. V. Tarasenko, A. V. Butsen, V. A. Rozantsev, and M. I. Nedel’ko, Eur. Phys. J. Appl. Phys., 30, 107–112 (2005).CrossRefGoogle Scholar
  16. 16.
    W. Haiss, N. T. K. Thanh, J. Aveyard, and D. G. Fernig, Anal. Chem., 79, 4215–4221 (2007).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • V. V. Kiris
    • 1
    Email author
  • N. V. Tarasenko
    • 1
  • E. A. Nevar
    • 1
  • M. I. Nedelko
    • 1
  • E. A. Ershov-Pavlov
    • 1
  • M. Kuzmanović
    • 2
  • J. Savović
    • 3
  1. 1.B. I. Stepanov Institute of PhysicsNational Academy of Sciences of BelarusMinskBelarus
  2. 2.University of BelgradeBelgradeSerbia
  3. 3.Vinca Institute of Nuclear SciencesUniversity of BelgradeBelgradeSerbia

Personalised recommendations