Advertisement

Spectrofluorimetric Method for Determination of Letrozole: Analytical Applications to Brain Tissue Samples and Alkaline Degradation Kinetic Study

  • A. M. El-Kosasy
  • M. H. Abdel Rahman
  • S. H. AbdelaalEmail author
Article

A simple and sensitive spectroflourimetric method has been proposed for the determination of the antitumor agent letrozole in tablets, spiked human plasma, and rat brain tissue homogenates. Our method involves measuring the native fluorescence of letrozole at 590 nm upon excitation at 239 nm as indicated upon scanning its three-dimensional spectrum. Various experimental parameters were intensively studied and the method was validated as per ICH guidelines. The calibration curve was linear over the concentration range 5–160 ng/mL, with limit of detection 1.36 ng/mL. It was successfully applied to the analysis of letrozole in Femara® tablets with mean recovery 99.35 ± 1.49% and was further applied to study the alkaline degradation kinetics of letrozole. The pseudo first-order rate constant and half-life were calculated. Moreover, successful application of our proposed procedure was carried out on spiked human plasma and rat brain tissue samples. Linear ranges were found to be 5–30 and 10–130 ng/mL, with detection limits 1.25 and 1.71 ng/mL for plasma and brain samples, respectively. Thanks to the method's simplicity, selectivity, and high sensitivity, it can be used for routine analysis in quality control laboratories and for further clinical investigations involving letrozole.

Keywords

letrozole spectrofluorimetry gliomas rate constant half-life 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. Sittig, Pharmaceutical Manufacturing Encyclopedia Textbook, 3rd ed., William Andrew Publishing, Norwich, New York (2013).Google Scholar
  2. 2.
    A. S. Bhatnagar, Breast Cancer Res. Treat., 105, 7–17 (2007).CrossRefGoogle Scholar
  3. 3.
    J. Doiron, A. H. Soultan, R. Richard, M. M. Touré, N. Picot, R. Richard, M. Cuperlovi-Culf, G. A. Robichaud, and M. Touaibi, Eur. J. Med. Chem., 46, 4010–4024 (2011).CrossRefGoogle Scholar
  4. 4.
    W. R. Miller, Semin. Oncol., 14, 3–11 (2003).CrossRefGoogle Scholar
  5. 5.
    R. Madhup, S. Kirti, M. L. B. Bhatt, P. K. Srivastava, M. Srivastava, and S. Kumar, The Breast, 15, 440–442 (2006).CrossRefGoogle Scholar
  6. 6.
    S. Goyal, T. Puri, P. K. Julka, and G. K. Rath, Acta Neurochir, 150, 613–615 (2008).CrossRefGoogle Scholar
  7. 7.
    N. Dave, G. A. Gudelsky, and P. B. Desai, Cancer Chemother. Pharmacol., 72, 349–357 (2013).CrossRefGoogle Scholar
  8. 8.
    N. Dave, L. M. L. Chow, G. A. Gudelsky, K. LaSance, X. Qi, and P. B. Desai, Mol. Cancer Ther., 14, 857–864 (2015).CrossRefGoogle Scholar
  9. 9.
    N. Mondal, T. K. Pal, and S. K. Ghosal, Pharmazie, 62, 597–598 (2007).Google Scholar
  10. 10.
    M. Ganesh, K. Kamalakannan, R. Patil, S. Upadhyay, A. Srivatsava, T. Sivakumar, and S. Ganguly, Rasayan J. Chem., 1, 55–58 (2008).Google Scholar
  11. 11.
    S. K. Acharjya, P. Mallick, P. Panda, K. R. Kumar, and M. M. Annapurna, J. Adv. Pharm. Tech. Res., 1, 348–353 (2010)CrossRefGoogle Scholar
  12. 12.
    A. Rusu, M. A. Sbanca, N. Todoran, and C. E. Vari, Acta Med. Marisiensis, 63, 80–86 (2017)CrossRefGoogle Scholar
  13. 13.
    C. U. Pfister, M. Duval, J. Godbillon, G. Gosset, D. Gygax, F. Marfil, A. Sioufi , and B. Winkler, Int. J. Pharm. Sci., 83, 520–524 (1994).Google Scholar
  14. 14.
    N. Mondal, T. K. Pal, and S. K. Ghosal, Acta Pol. Pharm., 66, 11–17 (2009).Google Scholar
  15. 15.
    M. Ganesh, K. Rajasekar, M. Bhagiyalakshmi, M. Vinoba, K. Saktimanigandan, and H. T. Jang, Trop. J. Pharm. Res., 9, 505–510 (2010).CrossRefGoogle Scholar
  16. 16.
    M. Rezaee, Y. Yamini, M. Hojjati, and M. Faraji, Anal. Methods, 2, 1341–1345 (2010).CrossRefGoogle Scholar
  17. 17.
    A. Shrivastava, A. K. Chakraborty, S. K. Rambhade, and U. K. Patil, Pharm. Sin., 2, 263–269 (2011).Google Scholar
  18. 18.
    S. K. Acharjya, S. K. Bhattamisra, B. R. E. Muddana, R.V. V. Bera, P. Panda, B. P. Panda, and G. Mishra, Sci. Pharm., 80, 941–953 (2012).CrossRefGoogle Scholar
  19. 19.
    B. A. Moussa, R. I. El-Bagary, and E. A. Osman, Anal. Chem. Lett., 3, 139–146 (2014).CrossRefGoogle Scholar
  20. 20.
    F. Marfil, V. Pineau, A. Sioufi , and J. Godbillon, J. Chromatogr. B, 683, 251–258 (1996).Google Scholar
  21. 21.
    A. Zarghi, S. M. Foroutan, A. Shafaati, and A. Khoddam, Chromatographia, 66, 747–750 (2007).CrossRefGoogle Scholar
  22. 22.
    J. Rodriguez, G. Castaneda, and L. Munoz, J. Chromatogr. B, 913914, 12–18 (2013).Google Scholar
  23. 23.
    B. Beer, B. Schubert, A. Oberguggenberger, V. Meraner, M. Hubalek, H. Oberacher, Anal. Bioanal. Chem., 398, 1791–1800 (2010).CrossRefGoogle Scholar
  24. 24.
    J. C. Precht, B. Ganchev, G. Heinkele, H. Brauch, M. Schwab, and T. E. Mürdter, Anal. Bioanal. Chem., 403, 301–308 (2012).CrossRefGoogle Scholar
  25. 25.
    S. Gomes, Int. J. Adv. Res. Pharm. Biosci., 3, 84–94 (2013).Google Scholar
  26. 26.
    U. Mareck, G. Sigmund, G. Opfermann, H. Geyer, M. Thevis, and W. Schanzer, Rapid Commun. Mass Spectrom., 19, 3689–3693 (2005).ADSCrossRefGoogle Scholar
  27. 27.
    J. J. Berzas, J. Rodriguez, A. M. Contento, and M. P. Cabello, J. Sep. Sci., 26, 908–914 (2003).Google Scholar
  28. 28.
    J. R. Flores, A. M. C. Salcedo, M. J. V. Llerena, and L. M. Fernandez, J. Chromatogr. A, 1185, 281–290 (2008).Google Scholar
  29. 29.
    J. R. Flores, A. M. C. Salcedo, and L. M. Fernandez, Electrophoresis, 30, 624–632 (2009).CrossRefGoogle Scholar
  30. 30.
    A. Rusu, G. Hancu, L. Berta, and C. E. Vari, Studia Ubb Chemia, 3, 251–264 (2017).CrossRefGoogle Scholar
  31. 31.
    P. Norouzi, M. R. Ganjali, M. Qomi, A. Nemati Kharat, and H. A. Zamani, Chin. J. Chem., 28, 1133–1139 (2010).CrossRefGoogle Scholar
  32. 32.
    M. R. Ganjali, A. Karimi, and P. Norouzi, Int. J. Electrochem. Sci., 7, 3681–3692 (2012).Google Scholar
  33. 33.
    H. P. Ranaganathan, G. Govindrajulu, and V. Palaniyappan, Int. J. Pharm. Pharm. Sci., 4, 582–586 (2012).Google Scholar
  34. 34.
    M. M. Annapurna, C. Mohapatro, and A. Narendo, J. Pharm. Anal., 2, 298–305 (2012).Google Scholar
  35. 35.
    E. F. Elkady and M. A. Fouad, Pak. J. Pharm. Sci., 28, 2041–2051 (2015).Google Scholar
  36. 36.
    ICH Harmonised Tripartite Guideline. Validation of Analytical Procedures: Text and Methodology, Q2 (R1). Geneva (2005); http://www.ich.org/fileadmin/Public_Web_Site/ICH_Products/Guidelines/Quality/Q2_R1/Step4/Q2_R1_Guideline.pdf. [Accessed 15 December 2016].
  37. 37.
    H. M. Lamb and J. C. Adkins, Drugs, 56, 1125–1140 (1998).CrossRefGoogle Scholar
  38. 38.
    A. H. Zawaneh, N. N. Khalil, S. A. Ibrahim, W. N. Al Dafiri, and H. M. Maher, Luminescence, 38, 1162–1168 (2017).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • A. M. El-Kosasy
    • 1
  • M. H. Abdel Rahman
    • 1
  • S. H. Abdelaal
    • 1
    Email author
  1. 1.Ain Shams University, Department of Pharmaceutical Analytical Chemistry, Faculty of PharmacyCairoEgypt

Personalised recommendations