Advertisement

Red–Orange Luminescence of Undoped Copper Iodide Crystals at 80–300 K

  • V. A. NikitenkoEmail author
  • S. G. Stouyhin
  • S. M. Kokin
Article

Orange and red photoluminescence spectra of copper iodide were studied and divided into four components with λmax ≈ 625–635 (O1), 635–655 (O2), 725–735 (R1), and 735–755 nm (R2) that were explained by possible association of the corresponding glow centers (GCs) with donor–acceptor pairs (DAPs) responsible for CuI edge luminescence. A generation-recombination scheme for red–orange luminescence was developed based on Auger interaction of GCs and DAPs. Intrinsic interstitial Cu defects acted as GCs for red CuI luminescence. Methods for controlling CuI luminescence characteristics by annealing crystals (in I2 vapor, in vacuo), doping with Li, or saturation of samples with electrodiffused Cu were demonstrated.

Keywords

copper iodide luminescence excitation crystal spectrum 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H. Morkoc and U. Ozgur, Zinc Oxide: Fundamentals, Materials and Device Technology, Wiley-VCH, 2009.Google Scholar
  2. 2.
    E. N. Budilova, V. A. Nikitenko, and S. M. Kokin, Izv. Ross. Akad. Nauk, Ser. Fiz., No. 2, 181–183 (2015) [E. N. Budilova, V. A. Nikitenko, and S. M. Kokin, Bull. Russ. Acad. Sci.: Phys., No. 2, 181–183 (2015)].Google Scholar
  3. 3.
    I. P. Kuz′mina and V. A. Nikitenko, Zinc Oxide. Preparation and Optical Properties [in Russian], Nauka, Moscow, 1984.Google Scholar
  4. 4.
    V. A. Nikitenko, Zh. Prikl. Spektrosk., 57, Nos. 5–6, 367–385 (1992) [V. A. Nikitenko, J. Appl. Spectrosc., 57, 783–798 (1992)].Google Scholar
  5. 5.
    V. A. Nikitenko, S. G. Stoyukhin, V. I. Popolitov, and Yu. M. Mininzon, Opt. Spektrosk., 51, 7–10 (1981).ADSGoogle Scholar
  6. 6.
    A. N. Gruzintsev and V. N. Zagorodnev, Fiz. Tekh. Poluprovodn., 46, No. 2, 158–163 (2012).Google Scholar
  7. 7.
    A. N. Gruzintsev and V. N. Zagorodnev, Fiz. Tekh. Poluprovodn., 46, No. 8, 999–1003 (2012).Google Scholar
  8. 8.
    A. N. Gruzintsev and V. N. Zagorodnev, Fiz. Tverd. Tela, 54, No. 1, 110–114 (2012).Google Scholar
  9. 9.
    S. Yue, M. Gu, X. Liu, J. Zhang, S. Huang, B. Liu, and C. Ni, Opt. Mater., 66, 308–313 (2017).ADSCrossRefGoogle Scholar
  10. 10.
    M. Wille, E. Kruger, S. Blaurock, V. Zviagin, R. Deichsel, G. Benndorf, L. Trefflich, V. Gottschalch, H. Krautscheid, R. Schmidt-Grund, and M. Grundmann, Appl. Phys. Lett., 111, 031105 (2017).ADSCrossRefGoogle Scholar
  11. 11.
    M. Grundmann, F. L. Schein, M. Lorenz, T. Bontgen, J. Lenzner, and H. Wenckstern, Phys. Status Sоlidi A, 210, No. 9, 1671–1703 (2013).Google Scholar
  12. 12.
    M. Zamfirescu, A. Kavokin, B. Gil, G. Malpuech, and M. Kaliteevski, Phys. Rev. B: Condens. Matter Mater. Phys., 65, No. 16, 1205–1209 (2002).Google Scholar
  13. 13.
    I. K. Vereshchagin, V. A. Nikitenko, and S. G. Stoyukhin, Zh. Prikl. Spektrosk., 36, No. 5, 848–851 (1982).ADSGoogle Scholar
  14. 14.
    V. A. Nikitenko, V. I. Popolitov, S. G. Stoyukhin, A. Ya. Shapiro, A. N. Lobachev, A. I. Tereshchenko, and V. G. Kolotilova, Pis′ma Zh. Tekh. Fiz., 5, No. 19, 1177–1181 (1979).Google Scholar
  15. 15.
    S. G. Stoyukhin, V. A. Nikitenko, and V. G. Kolotilova, Opt. Spektrosk., 64, 943–944 (1988).Google Scholar
  16. 16.
    I. K. Vereshchagin, V. A. Nikitenko, and S. G. Stoyukhin, Opt. Spektrosk., 64, 207–210 (1988).Google Scholar
  17. 17.
    I. K. Vereshchagin, V. A. Nikitenko, and S. G. Stoyukhin, J. Lumin., 29, 215–221 (1984).CrossRefGoogle Scholar
  18. 18.
    V. A. Nikitenko and S. G. Stoyukhin, Opt. Spektrosk., 54, No. 2, 193–196 (1983).Google Scholar
  19. 19.
    V. A. Nikitenko, S. G. Stoyukhin, and M. V. Chukichev, Zh. Prikl. Spektrosk., 49, No. 5, 779–784 (1988) [V. A. Nikitenko, S. G. Stoyukhin, and M. V. Chukichev, J. Appl. Spectrosc., 49, 1148–1152 (1988)].Google Scholar
  20. 20.
    V. I. Popolitov, Yu. M. Mininzon, V. A. Nikitenko, and S. G. Stoyukhin, Kristallografi ya, 29, No. 34, 779–784 (1984).Google Scholar
  21. 21.
    V. A. Nikitenko, S. G. Stoyukhin, V. I. Popolitov, and Yu. M. Mininzon, Zh. Prikl. Spektrosk., 34, No. 4, 635–638 (1981) [V. A. Nikitenko, S. G. Stoyukhin, V. I. Popolitov, and Yu. M. Mininzon, J. Appl. Spectrosc., 34, 410–413 (1981)].Google Scholar
  22. 22.
    N. P. Klochko, V. R. Kopach, G. S. Khripunov, V. E. Korsun, N. D. Volkova, V. N. Lyubov, M. V. Kirichenko, A. V. Kopach, D. O. Zhadan, and A. N. Otchenashko, Fiz. Tekh. Poluprovodn., 51, No. 6, 821–829 (2017).Google Scholar
  23. 23.
    F. Li, M. Gu, X. Liu, S. Yie, J. Zhu, Q. Li, Y. Hu, S. Huang, B. Liu, and C. Ni, J. Lumin., 205, 337–341 (2019).CrossRefGoogle Scholar
  24. 24.
    M. Xia, M. Gu, X. Liu, B. Liu, S. Huang, and C. Ni, J. Mater. Sci.: Mater. Electron., 26, 2629–2638 (2015).Google Scholar
  25. 25.
    M. V. Fok, Tr. Fiz. Inst. Akad. Nauk, 117, 80–121 (1980).Google Scholar
  26. 26.
    J. C. Phillips, Rev. Mod. Phys., 42, No. 3, 317–356 (1970).ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • V. A. Nikitenko
    • 1
    Email author
  • S. G. Stouyhin
    • 1
  • S. M. Kokin
    • 1
  1. 1.Russian University of Transport (MIIT)MoscowRussia

Personalised recommendations