Advertisement

Transformation of Structural Defects and The Hydrogen State Upon Heat Treatment of Hydrogenated Silicon

  • Yu. M. PokotiloEmail author
  • A. M. Petuh
  • O. Yu. Smirnova
  • G. F. Stelmakh
  • V. P. Markevich
  • O. V. Korolik
  • I. A. Svito
  • A. M. Saad
Article
  • 3 Downloads

Transformations of structural defects, the hydrogen state, and electrophysical properties of silicon treated in hydrogen plasma are studied. Treatment in plasma (150°C) produces bands in Raman spectra at 2095 and 2129 cm–1 that are associated with scattering by Si–H vibrations. Subsequent heat treatment (275°C) causes a band for gaseous molecular H2 to appear at 4153 cm–1. A comparison of Raman spectra and scanning probe microscopy results shows that hydrogenation forms defects (platelets) of average size 43 nm and surface density 6.5·109 cm–2 that are due to precipitation of H2 and formation of Si–H bonds. Inclusions of average size 115 nm and surface density 1.7·109 cm–2 that are filled with molecular H2 are observed after heat treatment. The concentration of free charge carriers remains constant after treatment in plasma and subsequent heat treatment.

Keywords

epitaxial silicon hydrogen plasma Raman scattering scanning probe microscope Hall effect 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. J. Pearton, J. W. Corbet, and S. Shi, Appl. Phys. A: Solids Surf., 43, 153–195 (1987).ADSCrossRefGoogle Scholar
  2. 2.
    H. J. Stein and S. K. Hahn, J. Appl. Phys., 75, 3477–3484 (1994).ADSCrossRefGoogle Scholar
  3. 3.
    V. P. Markevich, L. I. Murin, J. L. Lindstrom, and M. Suezava, Fiz. Tekh. Poluprovodn., 34, No. 9, 1039–1045 (2000).Google Scholar
  4. 4.
    E. Simoen, Y. L. Huang, Y. Ma, J. Lauwaert, P. Clauws, J. M. Rafí, A. Ulyashin, and C. Claeys, J. Electrochem. Soc., 156, No. 6, H434–H442 (2009).CrossRefGoogle Scholar
  5. 5.
    Y. Ohmura, Y. Zohta, and M. Kanazava, Phys. Status Solidi A, 15, 93–98 (1973).ADSCrossRefGoogle Scholar
  6. 6.
    Yu. Gorelkinskii and N. N. Nevinnyi, Nucl. Instrum. Methods Phys. Res., 209/210, 677–682 (1983).Google Scholar
  7. 7.
    J. Hartung and J. Weber, Phys. Rev. B: Condens. Matter Mater. Phys., 48, 14161–14166 (1993).ADSCrossRefGoogle Scholar
  8. 8.
    V. P. Markevich, L. Dobaczewski, K. Bonde Niellsen, V. V. Litvinov, A. N. Petukh, Yu. M. Pokotilo, N. V. Abrosimov, and A. R. Peaker, Thin Solid Films, 517, 419–421 (2008).ADSCrossRefGoogle Scholar
  9. 9.
    Kh. A. Abdullin, Yu. V. Gorelkinskii, B. N. Mukashev, and S. Zh. Tokmoldin, Fiz. Tekh. Poluprovodn., 36, No. 3, 257–268 (2002).Google Scholar
  10. 10.
    H. Nordmark, A. G. Ulyashin, J. C. Walmsley, and R. Holmestad, J. Phys.: Conf. Ser., 281, 012029(1–13) (2011).Google Scholar
  11. 11.
    K. Murakami, N. Fukata, S. Sasaki, R. Ishioka, M. Kitajima, S. Fujimura, J. Kikuchi, and J. Haneda, Phys. Rev. Lett., 77, 3161–3164 (1996).ADSCrossRefGoogle Scholar
  12. 12.
    A. W. R. Leitch, J. Weber, and V. Alex, Mater. Sci. Eng. B, 58, 6–12 (1999).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Yu. M. Pokotilo
    • 1
    Email author
  • A. M. Petuh
    • 1
  • O. Yu. Smirnova
    • 1
  • G. F. Stelmakh
    • 1
  • V. P. Markevich
    • 2
  • O. V. Korolik
    • 1
  • I. A. Svito
    • 1
  • A. M. Saad
    • 3
  1. 1.Belarusian State UniversityMinskBelarus
  2. 2.Department of Electrical and Electronic EngineeringUniversity of ManchesterManchesterUnited Kingdom
  3. 3.Al-Balqa Applied UniversitySaltJordan

Personalised recommendations