Mica Dehydroxylation Mechanism

  • T. I. ShishelovaEmail author
  • E. L. Lipovchenko
  • V. V. Shulga

The dehydroxylation mechanism of mica is studied using IR spectroscopy; x-ray structure and thermodynamic analysis; and kinetic, quantum-mechanical, and quantum-chemical methods. Dehydroxylation is shown to involve localization of a proton between two O atoms. A model in which the hydroxyl proton is placed in a double potential well is proposed. The model allows the basic features of mineral dehydroxylation to be revealed. The proton energy increases if the mineral is heated so that the barrier becomes more transparent. The probability of a particle transitioning through the barrier owing to a tunnel effect is considered. The change of this probability defines the dehydroxylation process.


mica phlogopite and muscovite dehydroxylation IR spectroscopy quantum-mechanical and quantumchemical methods 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    V. F. Kiselev, in: Abstracts of Papers of the Ist All-Union Conf. on Theor. Issues of Adsorption [in Russian], Moscow (1967), pp. 116–131.Google Scholar
  2. 2.
    T. I. Shishelova, N. G. Tyurin, E. A. Chaikin, and S. B. Leonov, Physicochemical Principles of Mica Composite Manufacturing [in Russian], Izd. LadB, Ekaterinburg (1993).Google Scholar
  3. 3.
    A. S. Sun-Tso-Zhen, T. I. Shishelova, and E. L. Lipovchenko, Mezhdunar. Zh. Eksp. Obraz., Nos. 8–2, 96–97 (2014).Google Scholar
  4. 4.
    T. I. Shishelova and M. S. Metsik, Zh. Prikl. Spektrosk., 14, No. 2, 303–307 (1971).Google Scholar
  5. 5.
    T. I. Shishelova, M. S. Metsik, and K. Ya. Sokolov, Zh. Prikl. Spektrosk., 20, No. 6, 1042–1044 (1974) [T. I. Shishelova, M. S. Metsik, and K. Ya. Sokolov, J. Appl. Spectrosc., 20, 784–786 (1974)].Google Scholar
  6. 6.
    G. V. Yukhnevich, Usp. Khim., 32, No. 11, 1397–1423 (1963).CrossRefGoogle Scholar
  7. 7.
    I. I. Plyusnin, Infrared Spectra of Silicates, Izd. MGU, Moscow (1967).Google Scholar
  8. 8.
    B. V. Deryagin, N. V. Churaev, and F. D. Ovcharenko, Water in Disperse Systems [in Russian], Khimiya, Moscow (1989).Google Scholar
  9. 9.
    V. V. Balashov and V. K. Dolinov, Course in Quantum Mechanics [in Russian], NITs Regulyarnaya i Khaoticheskaya Dinamika, Izhevsk (2001).Google Scholar
  10. 10.
    P. I. Dorogokupets and I. K. Karpov, Thermodynamics of Minerals and Mineral Equilibria [in Russian], Nauka, Novosibirsk (1984).Google Scholar
  11. 11.
    T. I. Shishelova and E. L. Lipovchenko, Fundam. Issled., Nos. 6–2, 311–315 (2015).Google Scholar
  12. 12.
    T. I. Shishelova and E. L. Lipovchenko, Usp. Sovrem. Estestvozn., No. 12, 177–184 (2015).Google Scholar
  13. 13.
    V. A. Blatov, A. P. Shevchenko, and B. V. Peresypkina, Semi-Empirical Calculation Methods of Quantum Chemistry [in Russian], Univers-grupp, Samara (2005).Google Scholar
  14. 14.
    I. I. Fripiat, P. Rouxhet, and H. Jacobs, Ann. Mineral., 50, No. 11/12, 1937–1958 (1965).Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • T. I. Shishelova
    • 1
    Email author
  • E. L. Lipovchenko
    • 1
  • V. V. Shulga
    • 1
  1. 1.Irkutsk National Research Technical UniversityIrkutskRussia

Personalised recommendations