Spectroscopic Investigation of Properties of Blue Sapphire Samples Depending on Heating Conditions

  • A. PhlayrahanEmail author
  • N. Monarumit
  • T. Lhuaamporn
  • S. Satitkune
  • P. Wathanakul

The 3309, 3232, and 3185 cm–1 are a series of peaks defined as the 3309 cm–1-series peaks of the functional group absorptions in the mid-infrared region of gem corundum samples, in particular, the blue sapphires. In this study, the 3309 cm–1-series peaks were attributed to –Ti–OH stretching. However, the application of revealing these series peaks is still limited because the mechanism of those peaks during the heating process has yet to be clarified. This study showed that the characteristics of the peaks depend strongly on the TiO2 content in the sapphire samples. Energy dispersive X-ray fluorescence (EDXRF) spectrometry indicated that the samples with Ti content >0.02 wt.% usually show the 3309 cm–1-series peaks with strong intensity. In addition, the X-ray absorption spectra (XAS) revealed that the oxidation state of Fe is Fe3+ while Ti is Ti4+ for every heating temperature. The UV-Vis-NIR optical absorption showed that the alteration of the bands at 580 and 710 nm, defined as the Fe3+/Ti4+ pair, was related directly to the atmospheric heating conditions. In contrast, the intensity of the 3309 cm–1-series peaks gradually decreased with increase in heating temperatures in any given atmosphere. This is a result of the mechanism of the bonding between Ti and/or Fe atoms and –OH in blue sapphire structures caused by the heating.


heated blue sapphire Fourier transform infrared spectroscopy X-ray absorption spectra UV-Vis-NIR spectra 3309 cm–1 IR-series peaks 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R. Webster, Gems: Their source, Descriptions and Identifi cation, 5th rev. edn., Butterworth Heinemann, Oxford (1994).Google Scholar
  2. 2.
    K. Nassau, The Physics and Chemistry of Color: The Fifteen Causes of Color, 2nd edn., Wiley, New Jersey (2001).Google Scholar
  3. 3.
    K. Nassau, Gems Gemol., 3, 121–131 (1981).CrossRefGoogle Scholar
  4. 4.
    K. Nassau, Am. Min., 63, 219–229 (1978).Google Scholar
  5. 5.
    P. Wongrawang, N. Monarumit, N. Thammajak, P. Wathanakul, and W. Wongkokua, Mater. Res. Express, 3, 026201 (2016).ADSCrossRefGoogle Scholar
  6. 6.
    A. Phlayrahan, N. Monarumit, S. Satitkune, and P. Wathanakul, J. Appl. Spectrosc., 85, 385–390 (2018).Google Scholar
  7. 7.
    N. Monarum it, W. Wongkokua, and S. Satitkune, Proc. Comput Sci., 86, 180–183 (2016).Google Scholar
  8. 8.
    N. Monarumit, W. Wongkokua, and S. Satitkune, Key Eng. Mater., 37, 585–589 (2017).CrossRefGoogle Scholar
  9. 9.
    D. S. McClure, J. Chem. Phys., 36, 2757–2759 (1962).Google Scholar
  10. 10.
    A. Phlayrahan, N. Monarumit, S. Satitkune, and P. Wathanakul, Proc. 4th International Gems & Jewelry Conference (GIT2014), December 8–9, 2014, Chiangmai (2016), pp. 211–216.Google Scholar
  11. 11.
    A. R. Moon and M. R. Phillips, J. Am. Ceram. Soc., 77, 356–367 (1994).Google Scholar
  12. 12.
    F. K. Volynets, V. G. Vorob'ev, and E. A. Sidorova, J. Appl. Spectros., 10, 665–667 (1972).Google Scholar
  13. 13.
    A. R. Moon and M. R. Phillips, Phys. Chem. Solid., 52, 1087–1099 (1991).ADSCrossRefGoogle Scholar
  14. 14.
    C. Smith, J. Gemmol., 24, 321–335 (1995).CrossRefGoogle Scholar
  15. 15.
    A. Beran and R. G. Rossman, Eur. J. Mineral., 18, 441–447 (2006).ADSCrossRefGoogle Scholar
  16. 16.
    G. Lehmann and H. Harder, Am. Mineral., 55, 98–105 (1970).Google Scholar
  17. 17.
    J. Ferguson and P. E. Fielding, Chem. Phys. Lett., 10, 262–265 (1971).ADSCrossRefGoogle Scholar
  18. 18.
    A. Beran, Eur. J. Mineral., 3, 971–975 (1991).ADSCrossRefGoogle Scholar
  19. 19.
    K. Eigenmann and Hs. H. Günthard, Chem. Phys. Lett., 12, 12–15 (1971).Google Scholar
  20. 20.
    J. L. Emmett, K. Scarratt, S. F. McClure, T. Moses, T. R. Douthit, R. Hughes, S. Novak, J. E. Slighley, W. Wang, O. Bordelon, and R. E. Kan, Gems Gemol., 39, 84–135 (2003).CrossRefGoogle Scholar
  21. 21.
    J. Madejová, Vib. Spectrosc., 31, 1–10 (2003).CrossRefGoogle Scholar
  22. 22.
    H. I. Joe, A. K. Vasudevan, G. Aruldhas, A. D. Damodaran, and K. G. K. Warrier, J. Solid State Chem., 131, 181–184 (1997).ADSCrossRefGoogle Scholar
  23. 23.
    S. Saminpanya, Aust. Gemmol., 21, 125–128 (2001).Google Scholar
  24. 24.
    N. Monarumit, S. Satitkune, and W. Wongkokua, J. Phys. Conf. Ser., 901, 012074 (2017).Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • A. Phlayrahan
    • 1
    Email author
  • N. Monarumit
    • 1
  • T. Lhuaamporn
    • 2
  • S. Satitkune
    • 1
  • P. Wathanakul
    • 1
  1. 1.Department of Earth Sciences, Faculty of ScienceKasetsart UniversityBangkokThailand
  2. 2.The Gem and Jewelry Institute of ThailandBangkokThailand

Personalised recommendations