Journal of Applied Spectroscopy

, Volume 86, Issue 4, pp 756–764 | Cite as

A Comprehensive Study on Theoretical and Experimental Effects of Nicotinic Acid and Picolinic Acid on the Structure and Stability of Human Serum Albumin

  • K. G. Chegini
  • S. M. Sadati
  • A. Rahbarimehr
  • P. Yaghmaei
  • A. Farasat
  • N. GheibiEmail author

The interaction of nicotinic acid (Nic) and picolinic acid (Pic), as two pyridine carboxylic acids, with human serum albumin (HSA) as a major transport protein in the blood was investigated using UV-Vis, fluorimetry, circular dichroism (CD), and molecular docking studies. The melting point (Tm) and ΔG0(298K) of HSA, as two thermodynamic parameters, were obtained from thermal denaturation of HSA with and without the presence of Nic and Pic. Tm values of 332.5, 336.4, and 333.9 K, and ΔG0(298K) of 97.4, 99.9, and 118.9 kJ/mol were recorded for HSA alone and following incubation with Nic and Pic, respectively. In chemical denaturation experiments utilizing guanidine hydrochloride (GuHCl), value of ΔG0H2O of 12.5, 16, and 15.3 kJ/mol, [Ligand]1/2 of 2.2, 2.4, and 2.3 M, and m of 5.6, 6.6, and 6.6 kJ/(mol × M) were recorded, respectively. The results of CD, UV-Vis spectroscopy, and molecular dynamics (MD) simulations showed that the binding of Nic and Pic to HSA induced conformational changes in HSA. Furthermore, the study of molecular docking indicated that the binding affinity of the Nic and Pic to site І (subdomain ІІA) is greater than that of site ІI (subdomain ІІIA) of HSA. These results provide valuable insights into the binding mechanisms of Nic and Pic to a plasma protein that is known to play an important role in the delivery of drugs to target organs.


human serum albumin stability molecular docking molecular dynamics 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. D. Waghmare, K. L. Wasewar, S. S. Sonawane, and D. Z. Shende, Sep. Purif. Technol., 120, 296–303 (2013).Google Scholar
  2. 2.
    L. A. Carlson, J. Int. Med., 258, No. 2, 94–114 (2005).Google Scholar
  3. 3.
    N. Khu nnawutmanotham, N. Chimnoi, P. Saparpakorn, P. Pungpo, S. Louisirirotchanakul, S. Hannong bua, and S. Techasakul, Molecules, 12, No. 2, 218–230 (2007).Google Scholar
  4. 4.
    M. C. Lourenço, M. V. de Souza, A. C. Pinheiro, M. d. L. Ferreira, R. S. Gonçalves, T. C. M. Nogueira, and M. A. Peralta, Arkivoc, 15, 181–191 (2007).Google Scholar
  5. 5.
    W. L. Mi tchell, G. M. Giblin, A. Naylor, A. J. Eatherton, B. P. Slingsby, A. D. Rawlings, K. S. Jandu, C. P. Haslam, A. J. Brown, and P. Goldsmith, Bioorg. Med. Chem. Lett., 19, No. 1, 259–263 (2009).Google Scholar
  6. 6.
    N. B. Pa tel and F. M. Shaikh, Saudi Pharm. J., 18, No. 3, 129–136 (2010).Google Scholar
  7. 7.
    M. Pavlo va, A. Mikhalev, M. Kon'shin, M. Y. Vasil'eva, L. Mardanova, T. Odegova, and M. Vakhrin, Pharm. Chem. J., 35, No. 12, 664–666 (2001).Google Scholar
  8. 8.
    R. Grant , S. Coggan, and G. Smythe, Int. J. Tryptophan Res., 2, 71 (2009).Google Scholar
  9. 9.
    J. A. Fe rnandez-Pol, P. D. Hamilton, and D. J. Klos, Anticancer Res., 21, No. 2A, 931–957 (2001).Google Scholar
  10. 10.
    P. Lee and X. Wu, Curr. Pharm. Des., 21, No. 14, 1862–1865 (2015).Google Scholar
  11. 11.
    C. Müller, R. T. Farkas, F. Borgna, R. M. Schmid, M. Benešová, and R. Schibli, Bioconjug. Chem.,28, No. 9, 2372–2383 (2017).Google Scholar
  12. 12.
    O. Dömötör, T. Tuccinardi, D. Karcz, M. Walsh, B. S. Creaven, and É. A. Enyedy, Bioorg. Chem., 52, 16–23 (2014).Google Scholar
  13. 13.
    A. Garg, D. M. M anidhar, M. Gokara, C. Malleda, C. S. Reddy, and R. Subramanyam, PLoS One, 8, No. 5, e63805 (2013).ADSGoogle Scholar
  14. 14.
    D. P. Yeggoni, M. Gokara, D. Mark Manidhar, A. Rachamallu, S. Nakka, and C. S. Reddy, R. Subramanyam, Mol. Pharm.,11, No. 4, 1117–1131 (2014).Google Scholar
  15. 15.
    O. Trott and A. J. Olson, J. Comput. Chem., 31, No. 2, 455–461 (2010).Google Scholar
  16. 16.
    G. M. Morris, D. S. Goodsell, R. S. Halliday, R. Huey, W. E. Hart, R. K. Belew, and A. J. Olson, J. Comput. Chem., 19, No. 14, 1639–1662 (1998).Google Scholar
  17. 17.
    E. Lindahl, B. H ess, and D. Van Der Spoel, Mol. Model. Annual, 7, No. 8, 306–317 (2001).Google Scholar
  18. 18.
    A. W. Schüttelko pf and D. M. Van Aalten, Acta Crystallogr. D: Biol. Crystallogr., 60, No. 8, 1355–1363 (2004).Google Scholar
  19. 19.
    W. F. van Gunster en, X. Daura, and A. E. Mark, Encyclopedia of Computational Chemistry, 2 (2002).Google Scholar
  20. 20.
    A. Farasat, F. Ra hbarizadeh, G. Hosseinzadeh, S. Sajjadi, M. Kamali, and A. H. Keihan, J. Biomol. Struct. Dynam., 35, No. 8, 1710–1728 (2017).Google Scholar
  21. 21.
    J. Min, X. Meng-X ia, Z. Dong, L. Yuan, L. Xiao-Yu, and C. Xing, J. Mol. Struct., 692, No. 1, 71–80 (2004).ADSGoogle Scholar
  22. 22.
    G. Zhang, Q. Que, J. Pan, and J. Guo, J. Mol. Struct., 881, No. 1, 132–138 (2008).ADSGoogle Scholar
  23. 23.
    C. N. Pace and J. M. Scholtz, Protein Struct.: A Practical Approach, 2, 299–321 (1997).Google Scholar
  24. 24.
    R. A. Deshpande, M. I. Khan, and V. Shankar, Biochim. Biophys. ActaProteins Proteomics, 1648, No. 1, 184–194 (2003).Google Scholar
  25. 25.
    H. Asghari, K. G. Chegini, A. Amini, and N. Gheibi, Int. J. Biol. Macromolecules, 84, 35–42 (2016).Google Scholar
  26. 26.
    Z. Chi, R. Liu, Y . Teng, X. Fang, and C. Gao, J. Agric. Food Chem., 58, No. 18, 10262–10269 (2010).Google Scholar
  27. 27.
    S. Patel and A. D atta, J. Phys. Chem. B, 111, No. 35, 10557–10562 (2007).Google Scholar
  28. 28.
    G. Zhang, B. Keit a, C. T. Craescu, S. Miron, P. de Oliveira, and L. Nadjo, J. Phys. Chem. B, 111, No. 38, 11253–11259 (2007).Google Scholar
  29. 29.
    M. Gokara, V. V. Narayana, V. Sadarangani, S. R. Chowdhury, S. Varkala, D. B. Ramachary, and R. Subra manyam, J. Biomol. Struct. Dynam., 35, No. 10, 2280–2292 (2017).Google Scholar
  30. 30.
    R. M. Abreu, H. J. Froufe, M. J. R. Queiroz, and I. C. Ferreira, Chem. Biol. Drug. Des., 79, No. 4, 530–534 (2012).Google Scholar
  31. 31.
    V. Mohan, A. C. G ibbs, M. D. Cummings, E. P. Jaeger, and R. L. DesJarlais, Curr. Pharm. Design, 11, No. 3, 323–333 (2005).Google Scholar
  32. 32.
    C. Cao, G. Wang, A. Liu, S. Xu, and L. Wang, S. Zou, Int. J. Mol. Sci., 17, No. 3, 333 (2016).Google Scholar
  33. 33.
    T. Awang, N. Wiri yatanakorn, P. Saparpakorn, D. Japrung, and P. Pongprayoon, J. Biomol. Struct. Dynam., 35, No. 4, 781–790 (2017).Google Scholar
  34. 34.
    G. P. Amini, F. G oshadrou, H. A. Ebrahim, P. Yaghmaei, and T. S. Hesami, Iran. Red. Cresc. Med. J., 19, No. 3, e40306 (2017).Google Scholar
  35. 35.
    M. C. Deller, L. Kong, and B. Rupp, Acta Crystallogr. F: Struct. Biol. Commun., 72, No. 2, 72–95 (2016).Google Scholar
  36. 36.
    P. Hammarströmand, B. H. Jonsson, Protein denaturation and the denatured state. Encyclopedia of Life Sciences, Wiley, New York (2005).Google Scholar
  37. 37.
    F. Rashid, S. Shar ma, and B. Bano, Protein J., 24, No. 5, 283–292 (2005).Google Scholar
  38. 38.
    W. K. Lim, J. Rösg en, and S. W. Englander, Proc. Natl. Acad. Sci., 106, No. 8, 2595–2600 (2009).ADSGoogle Scholar
  39. 39.
    R. Capomaccio, I. O sório, I. Ojea-Jiménez, G. Ceccone, P. Colpo, D. Gilliland, R. Hussain, G. Siligardi, F. Rossi, and S. Ricard-Blum, Biointerphases, 11, No. 4, 04B310 (2016).Google Scholar
  40. 40.
    H. Xu, N. Yao, H. Xu, T. Wang, G. Li, and Z. Li, Int. J. Mol. Sci., 14, No. 7, 14185–14203 (2013).Google Scholar
  41. 41.
    J. W. Donovan, J. Bio l. Chem., 244, No. 8, 1961–1967 (1969).Google Scholar
  42. 42.
    B. Ahmad, S. Parveen, and R. H. Khan, Biomacromolecules, 7, No. 4, 1350–1356 (2006).Google Scholar
  43. 43.
    H. Zhang, P. Wu, Y. W ang, and J. Cao, Int. J. Biol. Macromol., 92, 593–599 (2016).Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • K. G. Chegini
    • 1
  • S. M. Sadati
    • 2
  • A. Rahbarimehr
    • 2
  • P. Yaghmaei
    • 2
  • A. Farasat
    • 3
  • N. Gheibi
    • 1
    Email author
  1. 1.Cellular and Molecular Research CenterQazvin University of Medical SciencesQazvinIran
  2. 2.Islamic Azad University of Science and Research BranchFaculty of Basic SciencesTehranIran
  3. 3.Qazvin University of Medical SciencesDepartment of BiotechnologyQazvinIran

Personalised recommendations