Features of Formation and Cathodoluminescence of Thin Films of Yttrium and Gadolinium Oxides Activated by Europium
Article
First Online:
- 7 Downloads
The surface structure and cathodoluminescence (CL) spectra of thin films of Y2O3:Eu and Gd2O3:Eu, obtained by high-frequency ion-plasma sputtering, were investigated. By analysis of the form of the cathodoluminescence spectra it was shown that it is possible to create irregular solutions of yttrium and europium oxides and gadolinium and europium oxides in the respective films. It was established that Eu3+ ions replace Gd3+ ions in the Gd2O3 cubic lattice more uniformly than substitution of Y3+ ions by Eu3+ ions in the Y2O3 cubic lattice.
Keywords
yttrium oxide gadolinium oxide surface structure cathodoluminescence thin filmPreview
Unable to display preview. Download preview PDF.
References
- 1.N. Yamamoto, Cathodoluminescence, InTech, Croatia (2012).Google Scholar
- 2.A. S. Bugaev, V. B. Kireev, E. P. Sheshin, and A. Yu. Kolodyazhnyi, Usp. Fiz. Nauk,185, No. 8, 853–883 (2015).CrossRefGoogle Scholar
- 3.Q. Dai, M. E. Foley, C. J. Breshike, A. Lita, and G. F. Strouse, J. Am. Chem. Soc., 133, No. 39, 15475–15486 (2011).CrossRefGoogle Scholar
- 4.C. Shanga, X. Shang, Y. Qu, and M. Li, Chem. Phys. Lett., 501, Nos. 4–6, 480–484 (2011).Google Scholar
- 5.P. Packiyaraj and P. Thangadurai, J. Lumin., 145, 997–1003 (2014).CrossRefGoogle Scholar
- 6.E. V. Berlin and L. A. Seidman, Ion-Plasma Processes in Thin-Film Technology [in Russian], Tekhnosfera, Moscow (2010).Google Scholar
- 7.O. M. Bordun, I. O. Bordun, and I. Yo. Kukharskii, Zh. Prikl. Spektrosk.,82, No. 3, 380–385 (2015) [O. M. Bordun, I. O. Bordun, and I. Yo. Kukharskyy, J. Appl. Spectrosc., 82, 390–395 (2015)].Google Scholar
- 8.N. C. Chang and J. B. Gruber, J. Chem. Phys., 41, No. 10, 3227–3234 (1964).ADSCrossRefGoogle Scholar
- 9.G. Blasse and B. C. Grabmaier, Luminescent Materials, Springer-Verlag, Berlin (1994).CrossRefGoogle Scholar
- 10.T. A. Pomelova, V. V. Bakovets, N. V. Korol′kov, O. V. Antonova, and I. P. Dolgovesova, Fiz. Tverd. Tela, 56, No. 12, 2410–2419 (2014).Google Scholar
- 11.R. M. Krsmanović, Ž. Antić, M. G. Nikolić, M. Mitrić, and M. D. Dramićanin, Ceram. Int., 37, No. 2, 525–531 (2011).CrossRefGoogle Scholar
- 12.H. Shi, X.-Y. Zhang , W.-L. Dong, X.-Y. Mi, N.-L. Wang, Y. Li, and H.-W. Liu, Chin. Phys. B, 25, No. 4, 047802 (1–5) (2016).Google Scholar
- 13.W.-N. Wang, W. Widiyastuti, T. Ogi, I. W. Lenggoro, and K. Okuyama, Chem. Mater., 19, No. 7, 1723–1730 (2007).CrossRefGoogle Scholar
- 14.O. M. Bordun, I. O. Bordun, I. Yo. Kukharskii, Zh. Ya. Tsapovska, and M. V. Partyka, Zh. Prikl. Spektrosk.,84, No. 6, 1000–1006 (2017) [O. M. Bordun, I. O. Bordun, I. Yo. Kukharskyy, Zh. Ya. Tsapovska, and M. V. Partyka, J. Appl. Spectrosc., 84, 1072–1077 (2017)].Google Scholar
- 15.N. Grinvud and A. Érnsho, Chemistry of the Elements [in Russian], Binom. Laboratoriya Znanii, Moscow (2008).Google Scholar
Copyright information
© Springer Science+Business Media, LLC, part of Springer Nature 2019