Advertisement

Investigation of the Regulatory Effect of 2-Hexadecenal on Neutrophils by the Chemiluminescence Method

  • N. V. AmaegberiEmail author
  • G. N. Semenkova
  • A. G. Lisovskaya
  • S. S. Gusakova
  • V. А. Prokasheva
  • O. I. Shadyro
Article
  • 4 Downloads

The effect of 2-hexadecenal on the formation of reactive oxygen and chlorine species (ROCS) in neutrophils stimulated to phagocytosis has been determined by the chemiluminescence method. It has been established that at low concentrations this aldehyde demonstrates a priming effect on the cells, enhancing ROCS production, and at higher concentrations — significantly suppresses this process. Comparison of the results of chemiluminescence and fluorescence analysis of the cell characteristics suggests that 2-hexadecenal is a signaling molecule, which exhibits the properties of the neutrophil function regulator by modifying intracellular signaling processes associated with changes in ROCS production, cytoskeleton reorganization, increase in the level of unbound calcium ions in the cytoplasm, reduction of mitochondrial membrane potential. It also induces apoptosis.

Keywords

luminol-amplified chemiluminescence reactive oxygen and chlorine species neutrophils 2-hexadecenal 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    C. Nathan, Nat. Rev. Immunol., 6, 173–182 (2006).CrossRefGoogle Scholar
  2. 2.
    T. N. Mayadas, X. Cullere, and C. A. Lowell, Annu. Rev. Pathol., 9, 181–218 (2014).CrossRefGoogle Scholar
  3. 3.
    B. Amulic, C. Cazalet, G. L. Hayes, K. D. Metzler, and A. Zychlinsky, Annu. Rev. Immunol., 30, 459–489 (2012).CrossRefGoogle Scholar
  4. 4.
    R. Grecian, M. K. B. Whyte, and S. R. Walmsley, Br. Med. Bul., 128, 5–14 (2018).CrossRefGoogle Scholar
  5. 5.
    A. C. Carr, C. L. Hawkins, S. R. Thomas, R. Stocker, and B. Frei, Free Radic. Biol. Med., 30, No. 5, 526–536 (2001).CrossRefGoogle Scholar
  6. 6.
    J. M. Robinson, Histochem. Cell Biol., 130, 281–297 (2008).CrossRefGoogle Scholar
  7. 7.
    J. Arnhold and J. Flemmig, Arch. Biochem. Biophys., 500, No. 1, 92–106 (2010).CrossRefGoogle Scholar
  8. 8.
    Yu. A. Vladimirov and Ye. V. Proskurnina, Uspekhi Biol. Khim., 49, 341–388 (2009).Google Scholar
  9. 9.
    T. Kuznetsova, T. Kulahava, I. Zholnerevich, N. Amaegberi, G. Semenkova, O. Shadyro, J. and Arnhold, Mol. Immunol., 87, 317–324 (2017).Google Scholar
  10. 10.
    G. Semenkova, I. Zholnerevich, T. Kulahava, and Z. Kvacheva, Free Rad. Biol. Med., 120, Suppl. 1, S100 (2018).Google Scholar
  11. 11.
    A. A. Krjukov, G. N. Semenkova, S. N. Cherenkevich, and V. Gerein, BioFactors, 26, 283–292 (2006).CrossRefGoogle Scholar
  12. 12.
    B. Halliwell, M. V. Clement, and L. H. Longa, FEBS Lett., 486, 10–13 (2000).CrossRefGoogle Scholar
  13. 13.
    M. M. Tarpey, D. A. Wink, and M. B. Grisham, Am. J. Physiol. Regul. Integr. Comp. Physiol., 286, 431–444 (2004).CrossRefGoogle Scholar
  14. 14.
    F. Caldefie-Che′zet, S. Walrand, C. Moinard, A. Tridon, J. Chassagne, and M.-P. Vasson, Clin. Chim. Acta, 319, 9–17 (2002).CrossRefGoogle Scholar
  15. 15.
    C. P. LeBel, H. Ischiropoulos, and S. C. Bondy, Chem. Res. Toxicol., 5, 227–231 (1992).CrossRefGoogle Scholar
  16. 16.
    M. Karlsson, T. Kurz, U. T. Brunk, S. E. Nilsson, and C. I. Frennesson, Biochem. J., 428, 183–190 (2010).CrossRefGoogle Scholar
  17. 17.
    S. L. Hempel, G. R. Buettner, Y. Q. O′Malley, D. A. Wessels, and D. M. Flaherty, Free Radic. Biol. Med., 27, 146–159 (1999).Google Scholar
  18. 18.
    B. Kalyanaramana, V. Darley-Usmar, K. J. A. Davies, P. A. Dennery, H. J. Formanc, M. B. Grisham, G. E. Mann, K. Moore, L. J. Roberts II, and H. Ischiropoulos, Free Radic. Biol. Med., 52, No. 1, 1–6 (2012).CrossRefGoogle Scholar
  19. 19.
    N. Bartke and Y. A. Hannun, J. Lipid Res., 50, 591–596 (2009).CrossRefGoogle Scholar
  20. 20.
    O. Shadyro, A. Lisovskaya, G. Semenkova, I. Edimecheva, and N. Amaegberi, Lipid Insight., 8, 1–9 (2015).Google Scholar
  21. 21.
    N. V. Amaegberi, G. N. Semenkova, A. G. Lisovskaya, Z. B. Kvacheva, and O. I. Shadyro, Biofizika, 64, No. 3, 544–551 (2019).Google Scholar
  22. 22.
    N. V. Amaegberi, G. N. Semenkova, Z. B. Kvacheva, A. G. Lisovskaya, S. V. Pinchuk, and O. I. Shadyro, Cell Biochem. Funct., 1–9 (2019).Google Scholar
  23. 23.
    A. Kumar, H. S. Byun, R. Bittman, and J. Saba, Cell Signal., 23, 1144–1152 (2011).CrossRefGoogle Scholar
  24. 24.
    Z. Liu, Y. Gong, H. S. Byun, and R. Bittman, New J. Chem., 34, 470–475 (2010)CrossRefGoogle Scholar
  25. 25.
    A. Böyum, Scand. J. Immunol., 5, 9–15 (1976).CrossRefGoogle Scholar
  26. 26.
    F. Kato, M. Tanaka, and K. Nakamura, Toxicol. in Vitro, 13, 923–929 (1999).CrossRefGoogle Scholar
  27. 27.
    D. Shugar, Biochim. Biophys. Acta, 8, 302–309 (1952).CrossRefGoogle Scholar
  28. 28.
    F. Sivandzade, A. Bhalerao, and L. Cucullo, Bio. Protoc., 9, No. 1, 1–13 (2019).CrossRefGoogle Scholar
  29. 29.
    R. A. Hirst, C. Harrison, K. Hirota, and D. G. Lambert, Methods in Molecular Biology, Calcium Signaling Protocols, 2nd edn., Humana Press Inc., Totowa (1997), pp. 37–45.Google Scholar
  30. 30.
    A. Ishaque and M. Al-Rubeai, In: Methods in Biotechnology, Animal Cell Biotechnology, Methods and Protocols, 2nd edn., Humana Press Inc., Totowa (2007), pp. 285–299.CrossRefGoogle Scholar
  31. 31.
    A. I. Kavalenka, G. N. Semenkova, and S. N. Cherenkevich, Cell Tissue Biol., 1, No. 6, 551–559 (2007).CrossRefGoogle Scholar
  32. 32.
    J. Zhang, X. Wang, V. Vikash, Q. Ye, D. Wu, Y. Liu, and W. Dong, Oxid. Med. Cell. Longev. (2016); ID 4350965,  https://doi.org/10.1155/2016/4350965.Google Scholar
  33. 33.
    A. Mo′csai, B. Walzog, and C. A. Lowell, Cardiovasc. Res., 107, 373–385 (2015).CrossRefGoogle Scholar
  34. 34.
    B. M. Babior, J. D. Lambeth, and W. Nauseef, Arch. Biochem. Biophys., 397, 342–344 (2002).CrossRefGoogle Scholar
  35. 35.
    B. Samuelsson, Z. Rheumatol., 50, Suppl. 1, 3–6 (1991).Google Scholar
  36. 36.
    V. S. Hanna and E. A. A. Hafez, J. Adv. Res., 11, 23–32 (2018).CrossRefGoogle Scholar
  37. 37.
    K. Futosi, S. Fodor, and A. Mócsai, Int. Immunopharmacol., 17, 638–650 (2013).CrossRefGoogle Scholar
  38. 38.
    M. Reyes-Reyes, N. Mora, A. Zentella, and C. Rosales, J. Cell Sci., 114, 1579–1589 (2001).Google Scholar
  39. 39.
    A. Bertram and K. Ley, Arch. Immunol. Ther. Exp. (Warsz), 59, No. 2, 79–87 (2011).CrossRefGoogle Scholar
  40. 40.
    G. Huang, L. Z. Shi, and H. Chi, Cytokine, 48, No. 3, 161–169 (2009).CrossRefGoogle Scholar
  41. 41.
    D. Kim and C. L. Haynes, Analyst, 138, No. 22, 1–17 (2013).CrossRefGoogle Scholar
  42. 42.
    S. Elmore, Toxicol. Pathol., 35, 495–516 (2007).CrossRefGoogle Scholar
  43. 43.
    P. Pinton, C. Giorgi, R. Siviero, E. Zecchini, and R. Rizzuto, Oncogen., 27, No. 50, 6407–6418 (2008).CrossRefGoogle Scholar
  44. 44.
    E. A. Papakonstanti and C. Stournaras, FEBS Lett., 582, 2120–2127 (2008).CrossRefGoogle Scholar
  45. 45.
    G. Forgacs, S. H. Yook, P. A. Janmey, H. Jeong, and C. G. Burd, J. Cell Sci., 117, 2769–2775 (2004).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • N. V. Amaegberi
    • 1
    Email author
  • G. N. Semenkova
    • 1
  • A. G. Lisovskaya
    • 1
    • 2
  • S. S. Gusakova
    • 1
  • V. А. Prokasheva
    • 1
  • O. I. Shadyro
    • 1
  1. 1.Belarusian State UniversityMinskBelarus
  2. 2.Notre Dame Radiation LaboratoryUniversity of Notre DameNotre DameUSA

Personalised recommendations