Journal of Applied Spectroscopy

, Volume 86, Issue 4, pp 618–622 | Cite as

Cytotoxicity and DNA Binding Ability of Two Novel Gold(III) Complexes

  • G. Gu
  • C. Chen
  • Q. WangEmail author
  • Z. Gao
  • M. Xu

The interaction of two gold(III) complexes [Au(phen)Cl2](Cl) (1) and [Au(pdon)Cl2](Cl) (2) with calf thymus-DNA (CT-DNA) has been investigated by absorption and fluorescence emission. Both complexes 1 and 2 show medium interaction ability with CT–DNA with the intrinsic binding constants Kb of 4.98 × 105 and 1.98 × 105 M–1 at room temperature, respectively, which is the same as earlier reports for typical classical intercalators. Moreover, complex 1 demonstrates a better antitumor effect on the tested cancer cells.


potential anticancer agents DNA binding metal complexes fluorescence spectroscopy 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    L. Sleire, H. E. Forde-Tislevoll, I. A. Netland, L. Leiss, B. S. Skeie, and P. O. Enger, Pharmacol. Res., 124, 74–91 (2017).CrossRefGoogle Scholar
  2. 2.
    B. Jönsson and N. Wilking, J. Cancer Policy, 2, 45–62 (2014).Google Scholar
  3. 3.
    Y. L. Chen, M. C. Chang, and W. F. Cheng, Cancer Lett., 400, 282–292 (2017).Google Scholar
  4. 4.
    M. S. Kinch, Drug. Discov. Today, 21, 1046–1050 (2016).CrossRefGoogle Scholar
  5. 5.
    J. P. Delord, C. Puozzo, F. Lefresne, and R. Bugat, Anticancer Res., 29, 553–560 (2009).Google Scholar
  6. 6.
    D. S. Hsu, B. S. Balakumaran, C. R. Acharya, V. Vlahovic, K. S. Walters, and K. Garman, J. Clin. Oncol., 25, 4350–4357 (2007).CrossRefGoogle Scholar
  7. 7.
    M. T. Sener, E. Sener, A. Tok, B. Polat, I. Cinar, H. Polat, A. Fatih, and S. Halis, Pharmacol. Rep., 64, 594–602 (2012).CrossRefGoogle Scholar
  8. 8.
    P. D. Sanchez-Gonzalez, F. J. Lopez-Hernandez, F. Perez Barriocanal, A. I. Morales, and J. M. Lopez-Novoa, Nephrol. Dial. Transpl., 26, 3484–3495 (2011).CrossRefGoogle Scholar
  9. 9.
    S. I. Sohn, H. K. Rim, Y. H. Kim, J. H. Choi, J. H. Park, J. W. Choi, S. D. Kim, S. Y. Jeong, and K. T. Lee, Biol. Pharm. Bull., 34, 1508–1513 (2011).CrossRefGoogle Scholar
  10. 10.
    A. A. Fouad, A. I. Al-Sultan, S. M. Refaie, and M. T. Yacoubi, Toxicology, 274, 49–56 (2010).CrossRefGoogle Scholar
  11. 11.
    R. P. Miller, R. K. Tadagavadi, G. Ramesh, and W. B. Reeves, Toxins (Basel), 2, 2490–2518 (2010).CrossRefGoogle Scholar
  12. 12.
    C. Zhao, X. Chen, D. Zang, X. Lan, S. Liao, C. Yang, P. Q. Zhang, J. J. Wu, X. F. Li, N. N. Liu, Y. N. Liao, H. B. Huang, X. P. Shi, L. L. Jiang, X. H. Liu, Z. M. He, X. J. Wang, and J. B. Liu, Biochem. Pharmacol., 116, 22–38 (2016).CrossRefGoogle Scholar
  13. 13.
    T. S. Reddy, S. H. Priver, N. Mirzadeh, and S. K. Bhargava, J. Inorg. Biochem., 175, 1–8 (2017).CrossRefGoogle Scholar
  14. 14.
    N. P. E. Barry and P. J. Sadler, Che m. Commun., 49, 5106–5131 (2013).CrossRefGoogle Scholar
  15. 15.
    G. Gasser and N. Metzler-Nolte, Curr. Opin. Chem. Biol., 16, 84–91 (2012).CrossRefGoogle Scholar
  16. 16.
    T. Zou, C. T. Lum, C. N. Lok, J. J. Zhang, and C. M. Che, Chem. Soc. Rev., 44, 8786–8801 (2015).CrossRefGoogle Scholar
  17. 17.
    F. Trudu, F. Amato, P. Vaňhara, T. Pivetta, E. M. Peña-Méndez, and J. Havel, J. Appl. Biomed., 13, 79–103 (2015).CrossRefGoogle Scholar
  18. 18.
    S. Medici, M. Peana, V. M. Nurchi, J. I. Lachowicz, G. Crisponi, and M. A. Zoroddu, Coordin. Chem. Rev., 284, 329–350 (2015).CrossRefGoogle Scholar
  19. 19.
    M. N. Patel, B. S. Bhatt, and P. A. Dosi, Inorg. Chem. Commun., 29, 190–193 (2013).CrossRefGoogle Scholar
  20. 20.
    T. Zou, C. T. Lum, C. N. Lok, J. J. Zhang, and C. M. Che, Chem. Soc. Rev., 44, 8786–8801 (2015).CrossRefGoogle Scholar
  21. 21.
    C. T. Lum, Z. F. Yang, H. Y. Li, R. Wai-Yin Sun, S. T. Fan, R. T. Poon, M. C. M. Lin, C. M. Che, and H. F. Kuang, Int. J. Cancer, 118, 1527–1538 (2006).CrossRefGoogle Scholar
  22. 22.
    C. Marzano, L. Ronconi, F. Chiara, M. C. Giron, I. Faustinelli, P. Cristofori, A. Trevisan, and D. Fregona, Int. J. Cancer, 129, 487–496 (2011).CrossRefGoogle Scholar
  23. 23.
    A. Casado-Sanchez, C. Martin-Santos, J. M. Padron, R. Mas-Balleste, C. Navarro-Ranninger, J. Alemánc, and S. Cabrera, J. Inorg. Biochem., 174, 111–118 (2017).CrossRefGoogle Scholar
  24. 24.
    M. F. Tomasello, C. Nardon, V. Lanza, G. Di Natale, N. Pettenuzzo, S. Salmaso, D. Milardi, P. Caliceti, G. Pappalardo, and D. Fregona, Eur. J. Med. Chem., 138, 115–127 (2017).CrossRefGoogle Scholar
  25. 25.
    M. C. Gimeno, H. Goitia, A. Laguna, M. E. Luque, M. D. Villacampa, C. Sepulveda, and M. Meireles, J. Inorg. Biochem., 105, 1373–1382 (2011).CrossRefGoogle Scholar
  26. 26.
    B. Alberto, R. M. Pia, S. Guido, G. Chiara, C. Angela, and M. Luigi, Coordin. Che m. Rev., 253, 1692–1707 (2009).CrossRefGoogle Scholar
  27. 27.
    S. Urig and K. Becker, Semin. Cancer Biol., 16, 452–465 (2006).CrossRefGoogle Scholar
  28. 28.
    Y. Wang, Q. Y. He, R. W. Sun, C. M. Che, and J. F. Chiu, Eur. J. Pharmacol., 554, 113–122 (2007).CrossRefGoogle Scholar
  29. 29.
    T. C. Fuchs and P. Hewitt, AAPS J., 13, 615–631 (2011).CrossRefGoogle Scholar
  30. 30.
    Q. M. Wang, L. Yang, J. H. Wu, H. Wang, J. L. Song, and X. H. Tang, Biometals, 30, No. 1, 17–26 (2017).CrossRefGoogle Scholar
  31. 31.
    Q. M. Wang, H. Mao, W. L. Wang, H. M. Zhu, L. H. Dai, Y. L. Chen, and X. H. Tang, Biometals, 30, No. 4, 575–587 (2017).CrossRefGoogle Scholar
  32. 32.
    S. Satyanarayana, J. C. Dabroniak, and J. B. Chaires, Biochemistry, 31, No. 39, 9319–9324 (1992).CrossRefGoogle Scholar
  33. 33.
    P. Baldini, M. Belicchi-Ferrari, F. Bisceglie, P. P. Dall'Aglio, G. Pelosi, S. Pinelli, and P. Tarasconi, Inorg. Chem., 43, 7170–7179 (2004).CrossRefGoogle Scholar
  34. 34.
    A. Silvestri, G. Barone, G. Ruisi, D. Anselmo, S. Riela, and V. T. Liver, J. Inorg. Biochem., 101, 841–848 (2007).CrossRefGoogle Scholar
  35. 35.
    L. F. Tan, H. Chao, Y. F. Zhou, and L. N. Ji, Polyhedron, 26, No. 13, 3029–3036 (2007).CrossRefGoogle Scholar
  36. 36.
    H. Li, X. Y. Le, D. W. Pang, H. Deng, Z. H. Xu, and Z. H. Lin, J. Inorg. Biochem., 99, No. 11, 2240–2247 (2005).CrossRefGoogle Scholar
  37. 37.
    Mudasir, N. Yoshioka, and H. Inoue, J. Inorg. Biochem., 77, 239 (1999).CrossRefGoogle Scholar
  38. 38.
    P. T. Tamil-Selvi, H. Stoeckli-Evans, and M. J. Palaniandavar, Inorg. Biochem., 99, 2110–2118 (2005).CrossRefGoogle Scholar
  39. 39.
    A. Gohel, M. B. McCarthy, and G. Gronowicz, Endocrinology, 140, 5339–5347 (1999).CrossRefGoogle Scholar
  40. 40.
    J. K. Barton, J. M. Goldberg, C. V. Kumar, and N. J. Turro, J. Am. Chem. Soc., 108, 2081–2088 (1986).CrossRefGoogle Scholar
  41. 41.
    B. D. Wang, Z. Y. Yang, Q. Wang, T. K. Cai, and P. Crewdson, Bioorg. Med. Chem., 14, 1880–1888 (2006).CrossRefGoogle Scholar
  42. 42.
    H. Laitinen, V. P. Hytonen, V. R. Nordlund, and M. S. Kuloma, Cell Mol. Life Sci., 63, 2992–3017 (2006).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Pharmacy, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental ProtectionYancheng Teachers’ UniversityYanchengChina

Personalised recommendations