Journal of Applied Spectroscopy

, Volume 86, Issue 3, pp 538–541 | Cite as

A Handheld Miniature Ultraviolet LED Fluorescence Detection Spectrometer

  • Zongjie Bi
  • Yanchao Zhang
  • Shanshan Zhang
  • Ling Wang
  • Erdan Gu
  • Zhaoshuo Tian

This paper presents a handheld micro-fluorescence spectrometer with an integrated ultraviolet light-emitting diode. A small transmission grating was used as a dispersive element to disperse light. The spectrum was detected by a CCD array. The instrument can be connected to a PC or a smartphone through a USB cable for data processing and spectrum display. The spectrometer is 30 × 30 × 100 mm3 only. The spectrometer with a wavelength range from 380 to 750 nm had a spectral resolution of 3 nm. The fluorescence spectra from edible oil, chlorophyll, and paper were measured by the spectrometer we designed. This spectrometer has the advantages of compact structure, small size, light weight, fast detection speed, convenient use, and low cost.


ultraviolet sources light-emitting diodes spectroscopy fluorescence 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    X. X. Fang, H. Y. Li, P. Fang, J. Z. Pan, and Q. Fang, Talanta, 150, 135–141 (2016).CrossRefGoogle Scholar
  2. 2.
    H. Wang, Y. Qi, T. J. Mountziaris, and C. D. Salthouse, Rev. Sci. Instrum., 85, No. 5, 055003 (2014).ADSCrossRefGoogle Scholar
  3. 3.
    E. B. Ishay, G. Hazan, G. Rahamim, D. Amir, and E. Haas, Rev. Sci. Instrum., 83, No. 8, 084301 (2012).ADSCrossRefGoogle Scholar
  4. 4.
    F. B. Yang, J. Z. Pan, T. Zhang, and Q. Fang, Talanta, 78, No. 3, 1155–1158 (2009).CrossRefGoogle Scholar
  5. 5.
    H. Li, H. Wang, D. Huang, L. Liang, Y. Gu, C. Liang, S. Xu, and W. Xu, Rev. Sci. Instrum., 85, No. 5, 056109 (2014).ADSCrossRefGoogle Scholar
  6. 6.
    J. Liu, Z.-m. Qin, Y. Zuo, and S.-p. Liu, Paper Paper Making, 3, 030 (2011).Google Scholar
  7. 7.
    A. C. Ranulfi , M. C. B. Cardinali, T. M. K. Kubota, J. Freitas-Astú, E. J. Ferreira, B. S. Bellete, M. F. G. F. da Silva, P. R. V. Boas, A. B. Magalhaes, and D. M.B.P. Milori, Biosyst. Eng., 144, 133–144 (2016).CrossRefGoogle Scholar
  8. 8.
    D. Bersani and P. P. Lottici, Anal. Bioanal. Chem., 397, No. 7, 2631–2646 (2010).CrossRefGoogle Scholar
  9. 9.
    J. R. Etheridge, F. Birgand, M. R. Burchell, and B. T. Smith, J. Environ. Quality, 42, No. 6, 1896–1901 (2013).CrossRefGoogle Scholar
  10. 10.
    S. Landgraf, J. Biochem. Biophys. Methods, 61, Nos. 1–2, 125–134 (2004).CrossRefGoogle Scholar
  11. 11.
    Z. Rena, S. Huang, G. Liua, Z. Huanga, and L. Zenga, Proc. SPIE, 8192, 81920A-1 (2011).CrossRefGoogle Scholar
  12. 12.
    L. Sun, Y. Zhang, Z. Tian, X. Ren, and S. Fu, Appl. Opt. Photonics Chin., 96740X-6 (2015).Google Scholar
  13. 13.
    S. Lenk, P. Gádoros, L. Kocsányi, and A. Barócsi, Eur. J. Phys., 37, No. 6, 0604003 (2016).CrossRefGoogle Scholar
  14. 14.
    A. J. Das, A. Wahi, I. Kothari, and R. Raskar, Sci. Rep., 6, 32504 (2016).ADSCrossRefGoogle Scholar
  15. 15.
    H. Huang, Y. Li, J. Liu, J. Tong, and X. Su, Food Chem., 185, 233–238 (2015).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Zongjie Bi
    • 1
  • Yanchao Zhang
    • 1
  • Shanshan Zhang
    • 2
  • Ling Wang
    • 1
  • Erdan Gu
    • 3
  • Zhaoshuo Tian
    • 1
  1. 1.Harbin Institute of Technology at WeihaiWeihaiChina
  2. 2.The Shandong Institute of Shipbuilding TechnologyWeihaiChina
  3. 3.University of StrathclydeGlasgowUnited Kingdom

Personalised recommendations