Laser Plasma Spectroscopy Using a Pulsed CO2 Laser for the Analysis of Carbon in Soil

  • A. KhumaeniEmail author
  • W. S. Budi
  • A. Y. Wardaya
  • N. Idris
  • K. H. Kurniawan
  • K. Kagawa

Analysis of carbon (C) in soil has been successfully made by laser plasma spectroscopy using a pulsed carbon dioxide (CO2) laser. Fine particles of soil sample were attached on a surface of the metal subtarget by adding a small amount of moisture; the metal was used to initiate the gas plasma. Experimentally, a pulsed laser was focused on the subtarget to induce a luminous plasma. The particles were vaporized and entered the plasma region. Dissociation and excitation happened in the high-temperature plasma region. The result certified that an analysis of C in soil can be demonstrated. A further measurement revealed that a calibration curve of C was successfully carried out. The limit of detection of C in the soil was around 23 mg/kg.


laser-induced plasma spectroscopy laser-induced breakdown spectroscopy carbon analysis soil sample 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. Bakun, Science, 247, 198–201 (1990).ADSCrossRefGoogle Scholar
  2. 2.
    T. R. Karl and K. E. Trenberth, Science, 302, 1719–1723 (2003).ADSCrossRefGoogle Scholar
  3. 3.
    R. Lal, Science, 304, 1623–1627 (2004).ADSCrossRefGoogle Scholar
  4. 4.
    D. A. Cremers, M. H. Ebinger, D. A. Breshears, P. J. Unkefer, S. A. Kammerdiener, M. J. Ferris, K. M. Catlett, and J. R. Brown, J. Environ. Quality, 30, 2202–2206 (2001).CrossRefGoogle Scholar
  5. 5.
    E. A. Davidson and I. A. Jansses, Nature, 440, 165–173 (2006).ADSCrossRefGoogle Scholar
  6. 6.
    X. M. Zou, H. H. Ruan, Y. Fu, X. D. Yang, and L. Q. Sha, Soil Biol. Biochem., 37, 1923–1928 (2005).CrossRefGoogle Scholar
  7. 7.
    E. A. Paul, S. J. Morris, and S. Bohm, The determination of soil C pool size and turnover rates: biophysical fractionation and tracers, in: Assessment Methods for Soil Carbon, CRC Press, Florida (2000).Google Scholar
  8. 8.
    D. A. Cremers and L. J. Radziemski, Handbook of Laser-Induced Breakdown Spectroscopy, John Wiley and Sons Ltd., Chichester (2006).CrossRefGoogle Scholar
  9. 9.
    R. Krasniker, V. Bulatov, and I. Schechter, Spectrochim. Acta, B, 56, 609–618 (2001).ADSCrossRefGoogle Scholar
  10. 10.
    N. Idris, K. Kagawa, F. Sakan, K. Tsuyuki, and S. Miura, Appl. Spectrosc., 61, 1344–1351 (2007).ADSCrossRefGoogle Scholar
  11. 11.
    W. Setiabudi, H. Suyanto, H. Kurniawan, M. O. Tjia, and K. Kagawa, Appl. Spectrosc., 53, 719–730 (1999).ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • A. Khumaeni
    • 1
    Email author
  • W. S. Budi
    • 1
  • A. Y. Wardaya
    • 1
  • N. Idris
    • 2
  • K. H. Kurniawan
    • 3
  • K. Kagawa
    • 4
  1. 1.Diponegoro University, Department of Physics, Faculty of Sciences and MathematicsSemarangIndonesia
  2. 2.Syiah Kuala University, Department of Physics, Faculty of Mathematics and Natural SciencesBanda AcehIndonesia
  3. 3.Research Center of Maju Makmur MandiriJakarta BaratIndonesia
  4. 4.Fukui Science AcademyFukuiJapan

Personalised recommendations