Advertisement

Electron Paramagnetic Resonance of Mn2+ Ions in Nanosized Zinc Sulfide with a Planar Lattice Fault

  • I. P. VoronaEmail author
  • S. S. Ishchenko
  • V. G. Grachev
  • N. P. Baran
  • S. M. Okulov
  • V. V. Nosenko
  • A. V. Selishchev
BRIEF COMMUNICATIONS
  • 3 Downloads

We have studied the EPR of Mn2+ ions in three samples of cubic nano-ZnS made by different technologies and having different nanoparticle sizes. Manganese occurs in the samples as an uncontrolled impurity. The EPR spectra can be described by two components: the spectrum of the Mn2+ in a cubic environment (Mn2+(C)) with parameters g = 2.0022 ± 0.0002, A = (–63.5 ± 0.5)·10–4 cm–1, 0 b4 ≥ 3.5·10–4 cm–1; and the spectrum of the Mn2+ ion associated with a planar lattice stacking fault (Mn2+ (F)), with parameters g = 2.0022 ± 0.0002, A = (–63.5 ± 0.5)·10–4 cm–1, \( {b}_2^0 \) = (–36 ± 1)·10–4 cm–1. The ratio of the number of centers Mn2+(C)/Mn2+(F) is 2.1:1 for sample 1 and 1.7:1 for samples 2 and 3. Planar stacking faults are typical lattice faults for cubic nano-ZnS. EPR of the Mn2+ ions lets us monitor the presence of these ions.

Keywords

EPR ZnS lattice structure planar lattice stacking fault 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. Bruchez, Jr., M. Moronne, P. Gin, S. Weiss, and A. P. Alivisatos, Science, 281, 2013–2016 (1998).ADSCrossRefGoogle Scholar
  2. 2.
    B. T. Luong, E. Hyeong, S. Yoon, J. Choi, and N. Kim, RSC Adv., 3, 23395–23401 (2013).CrossRefGoogle Scholar
  3. 3.
    D. Bera, L. Qian, T.-K. Tseng, and P. H. Holloway, Rev. Mater., 3, 2260–2345 (2010).Google Scholar
  4. 4.
    C. Vatankhah and A. Ebadi, J. Rec. Sci., 2, 21–24 (2013).Google Scholar
  5. 5.
    S. B. Qadri, E. F. Skelton, D. Hsu, A. D. Dinsmore, J. Yang, H. F. Gray, and B. R. Ratna, Phys. Rev. B, 60, 9191 (1999).ADSCrossRefGoogle Scholar
  6. 6.
    A. D. Dinsmore, D. S. Hsu, S. B. Qadri, J. O. Cross, T. A. Kennedy, H. F. Gray, and B. R. Ratna, J. Appl. Phys., 88, 4985–4993 (2000).ADSCrossRefGoogle Scholar
  7. 7.
    R. N. Bhargava, D. Gallagher, X. Hong, and A. Nurmikko, Phys. Rev. Lett., 72, 416–419 (1994).ADSCrossRefGoogle Scholar
  8. 8.
    A. D. Dinsmore, D. S. Hsu, H. F. Gray, S. B. Qadri, Y. Tian, and B. R. Ratna, Appl. Phys. Lett., 75, 802 (1999).ADSCrossRefGoogle Scholar
  9. 9.
    P. A. Gonzalez Beermann, B. R. McGarvey, S. Muralidharan, and R. C. W. Sung, Chem. Mater., 16, 915–918 (2004).CrossRefGoogle Scholar
  10. 10.
    R. Kripal and A. Kumar Gupta, Chalcogenide Lett., 7, 203–209 (2010).Google Scholar
  11. 11.
    G. Murugadoss and V. Ramasamy, Spectrochim. Acta A, 93, 70–74 (2012).ADSCrossRefGoogle Scholar
  12. 12.
    S. V. Nistor, M. Stefan, D. Ghica, and L. C. Nistor, Rad. Measur., 56, 40–43 (2013).CrossRefGoogle Scholar
  13. 13.
    S. V. Nistor, M. Stefan, L. C. Nistor, D. Ghica, C. D. Mateescu, and J. N. Barascu, Mater. Sci. Eng., 15, 012024 (2010).Google Scholar
  14. 14.
    V. Nosenko, I. Vorona, V. Grachev, S. Ishchenko, N. Baran, Y. Becherikov, A. Zhuk, Y. Polishchuk, V. Kladko, and A. Selishchev, Nanoscale Res. Lett., 11, 517 (2016).Google Scholar
  15. 15.
    A. V. Selishchev and V. V. Pavlishchuk, Theor. Exp. Chem., 51, 366–374 (2016).CrossRefGoogle Scholar
  16. 16.
    G. Grachev, www.visual-epr.com.
  17. 17.
    V. G. Grachev and Yu. G. Semenov, Methods of computer treatment of EPR and ENDOR spectra, in: Radiospectroscopy, Perm (1983); pp. 163–171.Google Scholar
  18. 18.
    S. A. Al′tshuler and B. M. Kozyrev, Electron Paramagnetic Resonance of Compounds Containing Intermediate Group Elements, 2nd edn., rev. [in Russian], Nauka, Moscow (1972).Google Scholar
  19. 19.
    C. Rudowicz and S. K. Misra, Appl. Spectrosc. Rev., 36, 11–63 (2001).ADSCrossRefGoogle Scholar
  20. 20.
    R. S. Title, Phys. Rev., 131, 2503–2504 (1963).ADSCrossRefGoogle Scholar
  21. 21.
    S. P. Keller, I. L. Gelles, and W. V. Smith, Phys. Rev., 110, 850–855 (1958).ADSCrossRefGoogle Scholar
  22. 22.
    I. P. Vorona, V. G. Grachev, S. S. Ishchenko, N. P. Baran, Yu. Yu. Bacherikov, A. G. Zhuk, and V. V. Nosenko, Zh. Prikl. Spektrosk., 83, 60–64 (2016) [I. P. Vorona, V. G. Grachev, S. S. Ishchenko, N. P. Baran, Yu. Yu. Bacherikov, A. G. Zhuk, and V. V. Nosenko, J. Appl. Spectrosc., 83, 51–55 (2016) (English translation)].Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • I. P. Vorona
    • 1
    Email author
  • S. S. Ishchenko
    • 1
  • V. G. Grachev
    • 2
  • N. P. Baran
    • 1
  • S. M. Okulov
    • 1
  • V. V. Nosenko
    • 1
  • A. V. Selishchev
    • 3
  1. 1.V. Lashkaryov Institute of Semiconductor Physics of National Academy of Sciences of UkraineKyivUkraine
  2. 2.Montana State UniversityBozemanUSA
  3. 3.Chemnitz University of TechnologyChemnitzGermany

Personalised recommendations