Forensic Examination of Textile Fibers Using UV-Vis Spectroscopy Combined with Multivariate Analysis

  • Vishal SharmaEmail author
  • Raj Kumar
  • Pawandeep Kaur

The current study aims at discriminating cotton and woolen textile fibers from dye using UV-Vis spectroscopy and chemometrics methods. For extraction of the dye from fibers, seven solvent systems have been used, and different extraction conditions have also been tested. Two different approaches, i.e., a visual comparison of peaks and chemometric analysis, have been proposed to differentiate between the textile fibers. The comparison of peaks obtained through UV-Vis spectra provides the discrimination power of 83.6% for cotton fibers and 94.3% for the woolen fibers. However, the incorporation of chemometrics has further improved the discrimination power to 100% for cotton and 98.1% for woolen fibers. The discrimination of 100% is achieved with nonsignificant values of the Welch's t-test, which illustrates that all samples are discriminated.


textile fiber chemometrics UV-Vis spectroscopy forensic Welch's t-test 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. M. Houck, Mute Witnesses, San Diego, CA, Elsevier, Academic Press (2001).Google Scholar
  2. 2.
    S. Palenik, Microscopical Examination of Fibres. In: Forensic Examination of Fibres, Ed. J. Robertson, M. Grieve, 2nd ed., New York, CRC (1999).Google Scholar
  3. 3.
    K. Kirkbride and M. Tungol, Infrared Microspectroscopy of Fibres. In: Forensic Examination of Fibres, Ed. J. Robertson, M. Grieve, 2nd ed., New York, CRC (1999).Google Scholar
  4. 4.
    K. G. Wiggins, S. R. Crabtree, and B. M. March, J. Forens. Sci., 41, 1042–1045 (1996).CrossRefGoogle Scholar
  5. 5.
    G. M. Golding and S. Kokot, J. Forens. Sci., 34, 1156–1165 (1989).CrossRefGoogle Scholar
  6. 6.
    R. Griffin and J. Speers, Other Methods of Colour Analysis: High Performance Liquid Chromatography. In: Forensic Examination of Fibres, Ed. J. Robertson, M. Grieve, 2nd ed., Boca Raton, FL, CRC (1999).Google Scholar
  7. 7.
    A. A. Tuinman, L. A. Lewis, and S. A. Lewis, Anal. Chem., 75, 2753–2760 (2003).CrossRefGoogle Scholar
  8. 8.
    L. J. Soltzberg, A. Hagar, S. Kridaratikorn, A. Mattson, and R. Newman, J. Am. Soc. Mass Spectrom., 18, 2001–2006 (2007).CrossRefGoogle Scholar
  9. 9.
    A. R. Fakhari, M. C. Breadmore, M. Macka, and P. R. Haddad, Anal. Chim. Acta, 580, 188–193 (2006).CrossRefGoogle Scholar
  10. 10.
    M. C. Grieve, T. W. Biermann, and M. Davingnon, Sci. Justice, 43, 5–22 (2003).CrossRefGoogle Scholar
  11. 11.
    K. G. Wiggins, J. A. Holness, and B. M. March, J. Forens. Sci., 50, 364–368 (2005).CrossRefGoogle Scholar
  12. 12.
    K. G. Wiggins, R. Palmer, W. Hutchinson, and P. Drummond, Sci. Justice, 47, 9–18 (2007).CrossRefGoogle Scholar
  13. 13.
    S. Kokot, K. Crawford, L. Rintoul, and U. Meyer, Vibr. Spectrosc., 15, 103–111 (1997).CrossRefGoogle Scholar
  14. 14.
    J. Thomas, P. Buzzini, G. Massonnet, B. Reedy, and C. Roux, J. Forens. Sci. Int., 152, 189–197 (2005).CrossRefGoogle Scholar
  15. 15.
    G. Massonnet, P. Buzzini, F. Monard, G. Jochem, L. Fido, S. Bell, M. Stauber, T. Coyle, C. Roux, J. Hemmings, H. Leijenhorst, Z. Van Zanten, K. Wiggins, C. Smith, S. Chabli, T. Sauneuf, A. Rosengarten, C. Meile, S. Ketterer, and A. Blumer. J. Forens. Sci. Int., 222, 200–207 (2012).CrossRefGoogle Scholar
  16. 16.
    R. Kumar, V. Sharma, Spectrochim. Acta A: Mol. Biomol. Spectrosc., 175, 67–75 (2017).ADSCrossRefGoogle Scholar
  17. 17.
    M. J. C. Pontes. Anal. Chim. Acta, 642, 12–18 (2009).CrossRefGoogle Scholar
  18. 18.
    R. Kumar, V. Kumar, and V. Sharma, Spectrochim. Acta A: Mol. Biomol. Spectrosc., 170, 19–28 (2017).ADSCrossRefGoogle Scholar
  19. 19.
    R. G. Brereton, Chemometrics: Data Analysis for the Laboratory and Chemical Plant, Chichester, John Wiley & Sons Ltd. (2003).CrossRefGoogle Scholar
  20. 20.
    D. L. Massart, B. G. M. Vandeginste, and S. N. Deming, Chemometrics: A Textbook (Data Handling in Science and Technology), Vol. 2, Amsterdam, Elsevier (1988).zbMATHGoogle Scholar
  21. 21.
    A. V. Alekseyenko, Bioinformatics, 32, 3552–3558 (2016).Google Scholar
  22. 22.
    K. Smalldon, A. Moffat, and S. L. Morgan, J. Forens. Sci. Soc., 13, 291–295 (1973).CrossRefGoogle Scholar
  23. 23.
    H. F. Kaiser, Educ. Psychol. Measur., 20, 141–151 (1960).CrossRefGoogle Scholar
  24. 24.
    R. Kumar and V. Sharma, TrAC, Trends Anal. Chem., 105, 191–201 (2018).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Institute of Forensic Science and CriminologyPanjab UniversityChandigarhIndia

Personalised recommendations