Rapid Determination of Green Tea Origins by Near-Infrared Spectroscopy and Multi-Wavelength Statistical Discriminant Analysis

  • X. G. ZhuangEmail author
  • X. S. Shi
  • H. F. Wang
  • L. L. Wang
  • J. X. Fang

A new simple classification modeling procedure, multi-wavelength statistical discriminant analysis (MW-SDA), is proposed for the identification of Shandong green tea origins coupled with near-infrared (NIR) spectroscopy. After smoothing and first derivative preprocessing, seven characteristic wavelengths (CW) were selected by enlarging the detailed information of preprocessed spectra. Then, for each characteristic wavelength, a classification threshold is calculated according to the differences in absorbance value, which can best separate the spectra for different origins. Based on the seven CWs and corresponding thresholds, seven classifiers were obtained, which form the classification model. The performance of the calibration model was evaluated according to sensitivity, specificity, and classification accuracy. Analysis results indicated that MW-SDA can be used well to build classification models. The predicted precision of the last model in prediction set was: sensitivity = 1, specificity = 0.967, and accuracy = 98.3%.


multi-wavelength statistical discriminant analysis NIR spectroscopy green tea origin 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    T. Ikeda, S. Kanaya, T. Yonetani, A. Kobayashi, and E. Fukusaki, J. Agric. Food. Chem., 55, 9908–9912 (2007).CrossRefGoogle Scholar
  2. 2.
    Q. Chen, J. Zhao, S. Chaitep, and Z. Guo, Food Chem, 113, 1272–1277 (2009).CrossRefGoogle Scholar
  3. 3.
    H. Arab, A. Maroofian, S. Golestani, H. Shafaee, K. Sohrabi, and A. Forouzanfar, J. Med. Plants. Res., 5, 5465–5469 (2011).Google Scholar
  4. 4.
    I. C. Hou, S. Amarnani, M. T. Chong, and A. Bishayee, World J. Gastroenterol., 19, 3713–3722 (2013).CrossRefGoogle Scholar
  5. 5.
    L. X. Sang, B. Chang, X. H. Li, and M. Jiang, Nutr. Cancer, 65, 802–812 (2013).CrossRefGoogle Scholar
  6. 6.
    E. G. Oh, K. L. Kim, S. B. Shin, K. T. Son, H. J. Lee, T. H. Kim, Y. M. Kim, E. J. Cho, D. K. Kim, E. W. Lee, M. S. Lee, I. S. Shin, and J. H. Kim, Food. Sci. Biotechnol., 22, 593–598 (2013).CrossRefGoogle Scholar
  7. 7.
    T. Mostafa, D. Sabry, A. M. Abdelaal, I. Mostafa, and M. Taymour, Andrologia, 45, 272–277 (2013).CrossRefGoogle Scholar
  8. 8.
    E. C. Yiannakopoulou, Free Radic. Res., 47, 667–671 (2013).CrossRefGoogle Scholar
  9. 9.
    X. G. Zhuang, L. L. Wang, Q. Chen, X. Y. Wu, and J. X. Fang, Sci. China Technol. Sci., 60, 84–90 (2017).CrossRefGoogle Scholar
  10. 10.
    M. Blanco and I. Villarroya, Trends Anal. Chem., 21, 240–250 (2002).CrossRefGoogle Scholar
  11. 11.
    K. Wei, L.Y. Wang, J. Zhou, W. He, J. M. Zeng, Y. W. Jiang, and H. Cheng, Food. Chem., 130, 720–724 (2012).CrossRefGoogle Scholar
  12. 12.
    D. A. El-Hady and N. A. El-Maali, Talanta, 76, 138–145 (2008).CrossRefGoogle Scholar
  13. 13.
    P. Li, S.Q. Dong, Q. J. Wang, and Y. Z. Fang, Chin. J. Org. Chem., 26, 485–488 (2008).CrossRefGoogle Scholar
  14. 14.
    A. Alishahi, H. Farahmand, N. Prieto, and D. Cozzolino, Spectrochim. Acta A, 75, 1–7 (2010).ADSCrossRefGoogle Scholar
  15. 15.
    Y. Roggo, P. Chalus, L. Maurer, C. Lema-Martinez, A. Edmond, and N. Jent, J. Pharm. Biomed. Anal., 44, 683–700 (2007).CrossRefGoogle Scholar
  16. 16.
    A. M. Mouazen, J. De Baerdemaeker, and H. Ramon, Soil, Till. Res., 80, 171–183 (2005).CrossRefGoogle Scholar
  17. 17.
    Y. T. Liao, Y. X. Fan, and F. Cheng, Meat Sci., 86, 901–907 (2010).CrossRefGoogle Scholar
  18. 18.
    Y. J. Xie, Z. A. Wang, W. P. Hu, and S. Xu, Anal. Bioanal. Chem., 404, 3189–3194 (2012).CrossRefGoogle Scholar
  19. 19.
    C. H. Latorre, R. M. P. Crecente, S. G. Martin, and J. B. Garcia, Food. Chem., 141, 3559–3565 (2013).CrossRefGoogle Scholar
  20. 20.
    O. Galtier, N. Dupuy, Y. Le Dreau, D. Ollivier, C. Pinatec, J. Kister, and J. Artaud, Anal. Chim. Acta, 595, 136–144 (2007).CrossRefGoogle Scholar
  21. 21.
    M. J. Martelo-Vidal, F. Dominguez-Agis, and M. Vazquez, Aust. J. Grape Wine Res., 19, 62–67 (2013).CrossRefGoogle Scholar
  22. 22.
    N. S. Ye, Crit. Rev. Food. Sci. Nutr., 52, 775–780 (2012).CrossRefGoogle Scholar
  23. 23.
    Q. Chen, J. Zhao, and H. Lin, Spectrochim. Acta, A, 72, 845–850 (2009).ADSCrossRefGoogle Scholar
  24. 24.
    S. M. Yan, J. P. Liu, L. Xu, X. S. Fu, H. F. Cui, Z. Y. Yun, X. P. Yu, and Z. H. Ye, J. Anal. Methods Chem., 704971 (2014).Google Scholar
  25. 25.
    J. Zhao, Q. Chen, X. Huang, and C. H. Fang, J. Pharm. Biomed. Anal., 41, 1198–1204 (2006).CrossRefGoogle Scholar
  26. 26.
    L. Xu, P. T. Shi, X. S. Fu, H. F. Cui, Z. H. Ye, C. B. Cai, and X. P. Yu, J. Spectrosc., 2013, 1–8 (2013).Google Scholar
  27. 27.
    Y. Sun, Z. H. Du, X. Yin, and K. X. Xu, Spectrosc. Spectr. Anal., 28, 2282–2284 (2008).Google Scholar
  28. 28.
    X. G. Zhuang, L. L. Wang, X. Y. Wu, and J. X. Fang, J. Infrared Millim. Wave, 35, 200–205 (2016).Google Scholar
  29. 29.
    A. Savitzky and M. J. E. Golay, Anal. Chem., 36, 1627–1639 (1964).ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • X. G. Zhuang
    • 1
    • 2
    Email author
  • X. S. Shi
    • 1
  • H. F. Wang
    • 1
  • L. L. Wang
    • 3
  • J. X. Fang
    • 3
  1. 1.The 41st Research Institute of CETCQingdaoChina
  2. 2.Science and Technology on Electronic Test and Measurement LaboratoryQingdaoChina
  3. 3.Advanced Research Center for OpticsShandong UniversityJinanChina

Personalised recommendations