Journal of Applied Spectroscopy

, Volume 85, Issue 6, pp 1143–1150 | Cite as

Terahertz Spectroscopic Investigation of Salicylic Acid and Sodium Salicylate

  • L. Ding
  • W.-H. FanEmail author
  • C. Song
  • X. Chen
  • Z.-Y. Chen

The terahertz spectra of salicylic acid and sodium salicylate are measured by broadband terahertz time-domain spectroscopy (THz-TDS). Two absorption features of salicylic acid and three characteristic features of sodium salicylate are reported for the first time. Our investigation shows that salicylic acid and sodium salicylate can be easily distinguished based on their distinctive THz spectra, which could be attributed to their intra- and intermolecular structure differences. Furthermore, solid-state density functional theory calculations reveal that the absorption features of salicylic acid mainly originate from intermolecular interactions, except for the absorption feature at 2.28 THz, while gaseous-state theory calculations show that the absorption features of sodium salicylate mainly come from intramolecular vibrations except for the absorption feature at 0.40 THz. Our investigation indicates that THz vibrational modes are highly sensitive to molecular structures and intermolecular interactions, promoting the application of THz spectroscopy in distinguishing chemicals and pharmaceuticals with similar molecular structures.


terahertz spectrum density functional theory intermolecular interactions intramolecular vibrations 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    G. Davies, A. D. Burnett, W. H. Fan, E. H. Linfield, and J. E. Cunningham, Mater. Today, 11, 18–26 (2008).CrossRefGoogle Scholar
  2. 2.
    J. Hooper, E. Mitchell, C. Konek, J. Wilkinson, and J. Wilkinson, Chem. Phys. Lett., 467, 309–312 (2009).ADSCrossRefGoogle Scholar
  3. 3.
    F. Zhang, O. Kambara, K. Tominaga, J. I. Nishizawa, T. Sasaki, H. W. Wang, and M. Hayashi, RSC Adv., 4, 269–278 (2014).CrossRefGoogle Scholar
  4. 4.
    Z. P. Zheng and W. H. Fan, J. Biol. Phys., 38, 405–413 (2012).CrossRefGoogle Scholar
  5. 5.
    M. D. King, W. Ouellette, and T. M. Korter, J. Phys. Chem. A, 115, 9467–9478 (2011).CrossRefGoogle Scholar
  6. 6.
    D. Suhandy, T. Suzuki, Y. Ogawa, N. Kondo, H. Naito, T. Ishihara, and W. Liu, Eng. Agric. Environ. Food, 5, 90–95 (2012).CrossRefGoogle Scholar
  7. 7.
    K. Shiraga, T. Suzuki, N. Kondo, J. D. Baerdemaeker, and Y. Ogawa, Carbohydr. Res., 406, 46–54 (2015).CrossRefGoogle Scholar
  8. 8.
    M. Song, F. Yang, L. Liu, L. Shen, P. Hu, and F. Han, J. Nanosci. Nanotechnol., 16, 12208–12213 (2016).CrossRefGoogle Scholar
  9. 9.
    M. T. Ruggiero, T. Bardon, M. Strlic, P. F. Taday, and T. M. Korter, J. Phys. Chem. A, 118, 10101–10108 (2014).CrossRefGoogle Scholar
  10. 10.
    Z. P. Zheng, W. H. Fan, H. Yan, J. Liu, and L. M. Xu, Spectrosc. Spect. Anal., 33, 582–585 (2013).Google Scholar
  11. 11.
    S. Saito, T. M. Inerbaev, H. Mizuseki, N. Igarashi, and Y. Kawazoe, Jpn. J. Appl. Phys., 45, 4170–4175 (2006).ADSCrossRefGoogle Scholar
  12. 12.
    M. Boczar, Ł. Boda, and M. J. Wójcik, J. Chem. Phys., 124, 084306 (2006).ADSCrossRefGoogle Scholar
  13. 13.
    N. Laman, S. S. Harsha, and D. Grischkowsky, Appl. Spectrosc., 62, 319–326 (2008).ADSCrossRefGoogle Scholar
  14. 14.
    M. Takahashi, Y. Ishikawa, and H. Ito, Chem. Phys. Lett., 531, 98–104 (2012).ADSCrossRefGoogle Scholar
  15. 15.
    D. J. Bakker, A. Peters, V. Yatsyna, V. Zhaunerchyk, and A. M. Rijs, J. Phys. Chem. Lett., 7, 1238–1243 (2016).CrossRefGoogle Scholar
  16. 16.
    J. Hisazumi, T. Watanabe, T. Suzuki, N. Wakiyama, and K. Terada, Chem. Pharm. Bull., 60, 1487–1493 (2012).CrossRefGoogle Scholar
  17. 17.
    S. J. Clark, M. D. Segall, C. J. Pickard, P. J. Hasnip, M. I. Probert, K. Refson, and M. C. Payne, Z. Kristallogr., 220, 567–570 (2005).Google Scholar
  18. 18.
    J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett., 77, 3865–3868 (1996).ADSCrossRefGoogle Scholar
  19. 19.
    Z. P. Zheng, W. H. Fan, H. Li, and J. Tang, J. Mol. Spectrosc., 296, 9–13 (2014).ADSCrossRefGoogle Scholar
  20. 20.
    M. T. Ruggiero, J. Gooch, J. Zubieta, and T. M. Korter, J. Phys. Chem. A, 120, 939–947 (2016).CrossRefGoogle Scholar
  21. 21.
    A. Tkatchenko and M. Scheffler, Phys. Rev. Lett., 102, 073005 (2009).ADSCrossRefGoogle Scholar
  22. 22.
    L. Kleinman and D. M. Bylander, Phys. Rev. Lett., 48, 1425–1428 (1982).ADSCrossRefGoogle Scholar
  23. 23.
    R. A. Evarestov and V. P. Smirnov, Phys. Rev. B, 70, 155–163 (2004).CrossRefGoogle Scholar
  24. 24.
    W. Cochran, Acta Crystallogr., 6, 260–268 (1953).CrossRefGoogle Scholar
  25. 25.
    A. D. Becke, J. Chem. Phys., 98, 5648–5652 (1993).ADSCrossRefGoogle Scholar
  26. 26.
    M. Head-Gordon, J. A. Pople, and M. J. Frisch, Chem. Phys. Lett., 153, 503–506 (1988).ADSCrossRefGoogle Scholar
  27. 27.
    J. Dash, S. Ray, K. Nallappan, V. Kaware, N. Basutkar, R. G. Gonnade, and B. Pesala, J. Phys. Chem. A, 119, 7991–7999 (2015).CrossRefGoogle Scholar
  28. 28.
    M. Takahashi and Y. Ishikawa, Chem. Phys. Lett., 642, 29–34 (2015).ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • L. Ding
    • 1
    • 2
  • W.-H. Fan
    • 1
    Email author
  • C. Song
    • 1
    • 2
  • X. Chen
    • 1
    • 2
  • Z.-Y. Chen
    • 1
    • 2
  1. 1.State Key Laboratory of Transient Optics and Photonics, Xi’an Institute of Optics and Precision MechanicsChinese Academy of SciencesXi’anChina
  2. 2.University of Chinese Academy of SciencesBeijingChina

Personalised recommendations