Journal of Applied Spectroscopy

, Volume 85, Issue 6, pp 1136–1139 | Cite as

A Novel Reddish Orange Luminescent Material Sr3B2O6:Sm3+

  • İ. PekgözlüEmail author

The Sm3+ doped Sr3B2O6 phosphors were synthesized using a solution combustion synthesis method followed by heating of the precursor combustion ash at 1000°C in air. The synthesized phosphors were characterized by powder XRD. The photoluminescence properties of Sm3+-doped Sr3B2O6 were investigated at room temperature. The photoluminescence spectra at room temperature show the f–f transitions typical of Sm3+. The emission spectrum of Sr3B2O6:Sm3+ exhibited four sharp emission peaks corresponding to 4G5/26H5/2 (563–572 nm), 4G5/26H7/2 (598–614 nm), 4G5/26H9/2 (647–666 nm), and 4G5/26H11/2 (705–714 nm) transitions of Sm3+. The relation between the charge transfer band of Sm3+ ion and the host composition was discussed.


photoluminescence Sm3+ ion combustion synthesis Sr3B2O6 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    B. C. Jamalaiah, J. Suresh Kumar, A. Mohan Babu, T. Suhasini, and L. R. Moorthy, J. Lumin., 129, 363–369 (2009).CrossRefGoogle Scholar
  2. 2.
    Y. Zhang, C. Lu, L. Sun, Z. Xu, and Y. Ni, Mater. Res. Bull., 44, 179–183 (2009).CrossRefGoogle Scholar
  3. 3.
    E. Erdoğmuş, İ. Pekgözlü, and E. Korkmaz, Spectroscopy, 29, 58–64 (2014).Google Scholar
  4. 4.
    İ. Pekgözlü, H. Karabulut, A. Mergen, and A. S. Başak, J. Appl. Spectrosc., 83, 504–511 (2016).Google Scholar
  5. 5.
    E. Erdoğmuş and İ. Pekgözlü, Optik, 127, 7099–7103 (2016).ADSCrossRefGoogle Scholar
  6. 6.
    X. Liu and J. Lin, Solid State Sci., 11, 2030–2036 (2009).ADSCrossRefGoogle Scholar
  7. 7.
    Z. H. Ju, R. P. Wei, J. X. Ma, C. R. Pang, and W. S. Liu, J. Alloys Compd., 507, 133–136 (2010).CrossRefGoogle Scholar
  8. 8.
    Y. Yang, X. Jiang, Z. Lin, and Y. Wu, Crystals, 7, 95–111 (2017).CrossRefGoogle Scholar
  9. 9.
    P. Becker, Adv. Mater., 10, 979–992 (1998).CrossRefGoogle Scholar
  10. 10.
    D. A. Keszler, Curr. Opin. Solid State Mater. Sci., 4, 155–162 (1999).ADSCrossRefGoogle Scholar
  11. 11.
    X. Wang, H. Qi, Y. Li, F. Yu, H. Wang, F. Chen, Y. Liu, Z. Wang, X. Xu, and X. Zhao, Crystals, 7, 125–134 (2017).CrossRefGoogle Scholar
  12. 12.
    L. Richter and F. Müller, Z. Anorg. Allg. Chem., 467, 123–125 (1980).CrossRefGoogle Scholar
  13. 13.
    X. Li, C. Liu, L. Guan, W. Wei, and G. Fu, Mater. Lett., 87, 121–123 (2012).CrossRefGoogle Scholar
  14. 14.
    Y. Song, Q. Liu, X. Zhang, X. Fang, and T. Cui, Mater. Res. Bull., 48, 3687–3690 (2013).CrossRefGoogle Scholar
  15. 15.
    L. Cai, X. Li, Q. Cheng, J. Zheng, B. Fan, and C. Chen, Funct. Mater. Lett., 8, 1550022–1550026 (2015).ADSCrossRefGoogle Scholar
  16. 16.
    N. V. Kumar, J. Sharma, V. K. Singh, O. M. Ntwaeaborwa, and H. C. Swart, J. Electron. Spectrosc. Relat. Phenom., 206, 52–57 (2016).CrossRefGoogle Scholar
  17. 17.
    İ. Pekgözlü, J. Lumin., 134, 8–13 (2013).CrossRefGoogle Scholar
  18. 18.
    İ. Pekgözlü, Optik, 127, 4114–4117 (2016).ADSCrossRefGoogle Scholar
  19. 19.
    M. Manhas, V. Kumar, O. M. Ntwaeaborwa, and H. C. Swart, Mater. Res. Express, 2, 075008 (2015).ADSCrossRefGoogle Scholar
  20. 20.
    İ. Pekgözlü and H. Karabulut, Inorg. Mater., 45, 61–64 (2009).CrossRefGoogle Scholar
  21. 21.
    E. Cavalli, A. Belletti, R. Mahiou, and P. Boutinaud, J. Lumin., 130, 733–736 (2010).CrossRefGoogle Scholar
  22. 22.
    C. M. Reddy, G. R. Dillip, K. Mallikarjuna, S. Z. A. Ahamed, B. S. Reddy, and B. P. Raju, J. Lumin., 131, 1368–1375 (2011).CrossRefGoogle Scholar
  23. 23.
    İ. Pekgözlü and S. Çakar, J. Lumin., 132, 2312–2317 (2012).CrossRefGoogle Scholar
  24. 24.
    E. Erdoğmuş and İ. Pekgözlü, J. Appl. Spectrosc., 81, 373–377 (2014).Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Bartin University, Faculty of Engineering, Department of Environmental EngineeringBartinTurkey

Personalised recommendations