Lidar Differential Absorption System for Measuring Ozone in the Upper Troposphere–Stratosphere
Article
First Online:
- 12 Downloads
A lidar system has been built at the Siberian Lidar Station of the V. E. Zuev Institute of Atmospheric Optics of the Siberian Branch of the Russian Academy of Sciences in Tomsk (56.5 N, 85.0 E) to study the dynamics of ozone in the region of the tropopause and monitor global changes in the ozonosphere by measuring the vertical distribution of ozone in the upper troposphere–stratosphere. Probing is by differential absorption using the wavelength pairs 299/341 and 308/353 nm with temperature and aerosol corrections taken into account. The lidar system covers an altitude range of ~5–45 km.
Keywords
atmosphere lidar ranging ozone differential absorptionPreview
Unable to display preview. Download preview PDF.
References
- 1.B. I. Vasil’ev and U. M. Mannun, Kvant. Élektron., 36, No. 9, 801–820 (2006).CrossRefGoogle Scholar
- 2.V. D. Burlakov, S. I. Dolgii,A. A. Nevzorov, A. V. Nevzorov, and O. A. Romanovskii, Izv. Vyssh. Uchebn. Zaved., Fizika, 58, No. 8, 70–76 (2015).Google Scholar
- 3.O. A. Romanovskii, S. A. Sadovnikov, O. V. Kharchenko, and S. V. Yakovlev, Zh. Prikl. Spektrosk., 85, No. 3, 448–452 (2018) [O. A. Romanovskii, S. A. Sadovnikov, O. V. Kharchenko, and S. V. Yakovlev, J. Appl. Spectrosc., 85, No. 3, 457–461 (2018)].Google Scholar
- 4.L. T. Molina and M. T. Molina, J. Geophys. Res., 91, No. D130, 14.501–14.508 (1988).ADSGoogle Scholar
- 5.E. Galani, D. Balis, P. Zanis, C. Zerefos, A. Papayannis, H. Wernli, and E. Gerasopoulo, J. Geophys. Res., 108, No. D12, STA12-1–STA12-10 (2003).CrossRefGoogle Scholar
- 6.M. Nakazato, T. Nagai, T. Sakai, and Y. Hirose, Appl. Opt., 46, No. 12, 2269–2279 (2007).ADSCrossRefGoogle Scholar
- 7.V. S. Bukreev, S. K. Vartapetov, I. A. Veselovskii, and Yu. S. Shablin, Kvant. Élektron., 23, No. 4, 363–367 (1996).Google Scholar
- 8.H. Eisele, H. E. Scheel, R. Sladkovic, and T. Trickl, J. Atm. Sci., 56, No. 3, 319–330 (1999).ADSCrossRefGoogle Scholar
- 9.V. D. Burlakov, S. I. Dolgii, A. P. Makeev, A. V. Nevzorov, O. A. Romanovskii, and O. V. Kharchenko, Instrum. Exp. Techniq., 53, No. 6, 886–889 (2010).CrossRefGoogle Scholar
- 10.The Siberian Lidar Station: Apparatus and Results [in Russian], Izd. IOA SO RAN, Tomsk (2016).Google Scholar
- 11.A. A. Nevzorov, V. D. Burlakov, S. I. Dolgii, A. V. Nevzorov, O. A. Romanovskii, O. V. Kharchenko, and Yu. V. Gridnev, Opt. Atm. Okeana, 29, No. 8, 703–708 (2016).Google Scholar
- 12.H. Zhang, S. Wu, Y. Huang, and Y. Wang, Atm. Chem. Phys., 14, No. 8, 4079–4086 (2014).ADSCrossRefGoogle Scholar
- 13.G. Kirgis, T. Leblanc, I. S. McDermid, and T. D. Walsh, Atm. Chem. Phys., 13 (9), 5033–5047 (2013).ADSCrossRefGoogle Scholar
- 14.S. I. Dolgii, A. A. Nevzorov, A. V. Nevzorov, O. A. Romanovskii, and O. V. Kharchenko, Remote Sensing, 9, No. 5, 447 (2017).ADSCrossRefGoogle Scholar
- 15.V. Gorshelev, A. Serdyuchenko, M. Weber, W. Chehade, and J. P. Burrows, Atm. Meas. Technol., 7, No. 2, 609–624 (2014).CrossRefGoogle Scholar
- 16.A. Serdyuchenko, V. Gorshelev, M. Weber, W. Chehade, and J. P. Burrows, Atm. Meas. Technol., 7, No. 2, 625–636 (2014).CrossRefGoogle Scholar
- 17.A. V. El’nikov and V. V. Zuev, Opt. Atm. Okeana, 5, No. 10, 1050–1054 (1992).ADSGoogle Scholar
- 18.T. August, D. Klaes, P. Schlüssel, T. Hultberg, M. Crapeau, A. Arriaga, A. O’Carroll, D. Coppens, R. Munro, and X. Calbet, J. Quant. Spectrosc. Radiat. Transf., 113, No. 11, 1340–1371 (2012).ADSCrossRefGoogle Scholar
- 19.
- 20.A. J. Krueger and R. A. Minzner, J. Geophys. Res., 81, No. D24, 4477–4481 (1976).ADSCrossRefGoogle Scholar
Copyright information
© Springer Science+Business Media, LLC, part of Springer Nature 2019