Advertisement

Journal of Applied Spectroscopy

, Volume 85, Issue 6, pp 1094–1100 | Cite as

Determination of Bisphenol A by Synchronous Fluorimetry Using Procaine Hydrochloride as Self-Quenching Fluorescence Probe

  • Y. F. ZhuangEmail author
  • G. P. Cao
  • J. Y. Mao
  • B. L. Liu
Article
  • 3 Downloads

A new synchronous fluorimetric method for the analysis of bisphenol A has been developed based on procaine hydrochloride as a self-quenching fluorescence probe. In acidic solution, procaine hydrochloride could be diazotized with sodium nitrite; then the diazotized product could react with bisphenol A in NH3–NH4Cl buffer and produce the quenching of fluorescence of diazotized procaine hydrochloride-NH3–NH4Cl solution. Based on this observation, an inhibitory fluorimetric method is reported for the determination of trace bisphenol A. The synchronous spectral peaks of the reaction system are at 225 and 270 nm. The spectra of the two peaks can be separated, and bisphenol A can be determined directly. The possible mechanism of the reaction has also been discussed. Under optional conditions, bisphenol A can be determined over the concentration range of 0.10 to 1.4 μg/mL with a correlation coefficient of 0.99. The detection limit is 0.04 μg/mL at a signal-to-noise ratio of 3. The relative standard deviation (RSD) for 11 repetitive determinations of 1.0 μg/mL b isphenol A is 0.32%. The utility of this method was demonstrated by determining bisphenol A in hot water in contact with commercially available table-water bottle samples.

Keywords

bisphenol A synchronous fluorimetry detection procaine hydrochloride quenching fluorescence probe 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. B. P. Vidal, G. A. Ibañez, and G. M. Escandar, Talanta, 143, 162–168 (2015).CrossRefGoogle Scholar
  2. 2.
    Y. Zhu, C. Zhou, X. Yan, Y. Yan, and Q. Wang, Anal. Chim. Acta, 883, 81–89 (2015).CrossRefGoogle Scholar
  3. 3.
    A. Kim, C. R. Li, C. F. Jin, K. W. Lee, S. H. Lee, K. J. Shon, N. G. Park, D. K. Kim, S. W. Kang, Y. B. Shim, and J. S. Park, Chemosphere, 68, 1204–1209 (2007).ADSCrossRefGoogle Scholar
  4. 4.
    S. Rodriguez-Mozaz, M. L. de Alda, and D. Barceló, Water Res., 39, 5071–5079 (2005).CrossRefGoogle Scholar
  5. 5.
    Y. Watabe, T. Kondo, M. Morita, N. Tanaka, J. Haginaka, and K. Hosoya, J. Chromatogr. A, 1032, 45–49 (2004).CrossRefGoogle Scholar
  6. 6.
    J. Poskrobko, M. Dejnega, and M. Kiedik, J. Chromatogr. A, 883, 291–297 (2000).CrossRefGoogle Scholar
  7. 7.
    Y. Sun, M. Wada, O. Al-Dirbashi, N. Kuroda, H. Nakazawa, and K. Nakashima, J. Chromatogr. B, 749, 49–56 (2000).CrossRefGoogle Scholar
  8. 8.
    M. Rezaee, Y. Yamini, S. Shariati, A. Esrafili, and M. Shamsipur, J. Chromatogr. A, 1216, 1511–1514 (2009).CrossRefGoogle Scholar
  9. 9.
    M. Kawaguchi, R. Ito, N. Endo, N. Okanouchi, N. Sakui, K. Saito, and H. Nakazawa, J. Chromatogr. A, 1110, 1–5 (2006).CrossRefGoogle Scholar
  10. 10.
    S. Wang, X. Wei, L. Du, and H. Zhuang, J. Lumin., 20, 46–50 (2005).CrossRefGoogle Scholar
  11. 11.
    K. K. Reza, M. A. Ali, S. Srivastava, V. V. Agrawal, and A. M. Biradar, Biosens. Bioelectron., 74, 644–651 (2015).CrossRefGoogle Scholar
  12. 12.
    L. A. Goulart, F. C. de Moraes, and L. H. Mascaro, Mater. Sci. Eng. C, 58, 768–773 (2016).CrossRefGoogle Scholar
  13. 13.
    E. Mazzotta, C. Malitesta, and E. Margapoti, Anal. Bioanal. Chem., 405, 3587–3592 (2013).CrossRefGoogle Scholar
  14. 14.
    T. Ndlovu, O. A. Arotiba, S. Sampath, R. W. Krause, and B. B. Mamba, Sensors, 12, 11601–11611 (2012).CrossRefGoogle Scholar
  15. 15.
    Y. F. Zhuang, J. T. Zhang, and G. P. Cao, J. Chin. Chem. Soc., 55, 994–1000 (2008).ADSCrossRefGoogle Scholar
  16. 16.
    Y. F. Zhuang, M. Zhou, J. Gu, and X. M. Li, Spectrochim. Acta A: Mol. Biomol. Spectrosc., 122, 153–157 (2014).ADSCrossRefGoogle Scholar
  17. 17.
    Y. Li, J. Y. Xu, L. K. Wang, Y. J. Huang, J. J. Guo, X. Y. Cao, F. Shen, Y. Luo, and C. Y. Sun. Sens. Actuators B: Chem., 222, 815–822 (2016).CrossRefGoogle Scholar
  18. 18.
    X. Wang, H. L. Zeng, Y. L. Wei, and J. M. Lin, Sens. Actuators B: Chem., 114, 565–572 (2006).CrossRefGoogle Scholar
  19. 19.
    M. Del Olmo, A. Zafra, A. B. Jurado, and J. L. Vilchez, Talanta, 50, 1141–1148 (2000).CrossRefGoogle Scholar
  20. 20.
    J. Fan, H. Q. Guo, G. G. Liu, and P. G. Peng, Anal. Chim. Acta, 585, 134–138 (2007).CrossRefGoogle Scholar
  21. 21.
    O. M. Zharkova, Y. P. Morozova, and V. Y. Artyukhov, Russ. Phys. J., 48, 17–24 (2005).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Y. F. Zhuang
    • 1
    Email author
  • G. P. Cao
    • 1
  • J. Y. Mao
    • 1
  • B. L. Liu
    • 1
  1. 1.School of Science, Changzhou Institute of Technology, Department of ChemistryChangzhouChina

Personalised recommendations