Advertisement

Journal of Applied Spectroscopy

, Volume 85, Issue 6, pp 1071–1075 | Cite as

Application of Spectral Methods to Study the Stability of Amiodarone Hydrochloride Micellar Solutions

  • V. N. LeontievEmail author
  • O. I. Lazovskaya
Article
  • 2 Downloads

The stability of micellar solutions of amiodarone hydrochloride in the presence of polysorbate-80 and benzyl alcohol was studied using fluorescence spectrometry with λex = 420 m and λem = 506 nm. A formation scheme for mixed micelles consisting of nonionizable surfactant polysorbate-80 and cationic amiodarone with chloride counterion was proposed. Benzyl alcohol was found to lower the stability of the mixed micelles and lead to crystallization of amiodarone hydrochloride. The counterion was replaced in the presence of acetate so that crystals of amiodarone acetate with a characteristic band for acetate carbonyl stretching vibrations νC=O at 1734 cm–1 were formed. The solubilities of amiodarone hydrochloride and acetate in H2O at 20°C were determined to be 0.33 and 0.058 mg/mL. A change of the amiodarone hydrochloride to polysorbate-80 mole ratio and avoidance of benzyl alcohol and acetate-containing solutions are recommended to improve the stability of the parenteral dosage form.

Keywords

parenteral dosage form amiodarone hydrochloride polysorbate-80 benzyl alcohol micelle-formation mixed micelles amiodarone acetate fluorescence spectroscopy IR spectroscopy 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    D. Horter and J. B. Dressman, Adv. Drug Delivery Rev., 25, No. 1, 3–14 (1997).CrossRefGoogle Scholar
  2. 2.
    K. Holmberg, B. Jonsson, B. Kronberg, and B. Lindman, Surfactants and Polymers in Aqueous Solution, 2nd edn., John Wiley & Sons, Chichester, 2003.Google Scholar
  3. 3.
    Y. Bouligand, F. Boury, J.-M. Devoisselle, R. Fortune, J.-C. Gautier, D. Girard, H. Maillol, and J.-E. Proust, Langmuir, 14, No. 2, 542–546 (1998).CrossRefGoogle Scholar
  4. 4.
    A. M. Rubim, J. B. Rubenick, E. Gregolin, L. V. Laporta, R. Leitenberg, and C. M. B. Rolim, Braz. J. Pharm. Sci., 51, No. 4, 957–966 (2015).CrossRefGoogle Scholar
  5. 5.
    L. Benedini, P. V. Messina, R. H. Manzo, D. A. Allemandi, S. D. Palma, E. P. Schulz, M. A. Frechero, and P. C. Schulz, J. Colloid Interface Sci., 342, No. 2, 407–414 (2010).ADSCrossRefGoogle Scholar
  6. 6.
    P. F. Souney, W. D. Cooper, and D. J. Cushing, Expert Opin. Drug Saf., 9, No. 2, 319–333 (2010).CrossRefGoogle Scholar
  7. 7.
    B. A. Kerwin, J. Pharm. Sci., 97, No. 8, 2924–2935 (2008).CrossRefGoogle Scholar
  8. 8.
    F. Boury, J. Gautier, Y. Bouligand, and J. Proust, Colloids Surf., B, 20, No. 3, 219–227 (2001).CrossRefGoogle Scholar
  9. 9.
    L. J. Ravin, E. G. Shami, A. Intoccia, E. Rattie, and G. Joseph, J. Pharm. Sci., 58, No. 10, 1242–1245 (1969).CrossRefGoogle Scholar
  10. 10.
    L. J. Ravin, E. G. Shami, and E. S. Rattie, J. Pharm. Sci., 64, No. 11, 1830–1833 (1975).CrossRefGoogle Scholar
  11. 11.
    A. Mehreteab and B. Chen, J. Am. Oil Chem. Soc., 72, No. 1, 49–52 (1995).CrossRefGoogle Scholar
  12. 12.
    M. G. Miguel, Adv. Colloid Interface Sci., 8990, 1–23 (2001).Google Scholar
  13. 13.
    K. Szymczyk and A. Taraba, J. Therm. Anal. Calorim., 126, No. 1, 315–326 (2016).CrossRefGoogle Scholar
  14. 14.
    M. E. Mahmood and D. A. F. Al-Koofee, Global J. Sci. Front. Res. (GJSFR), 13, No. 4, 1–7 (2013).Google Scholar
  15. 15.
    GOST 33034-2014. Test methods for environmentally hazardous chemicals. Water solubility.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Belarusian State Technological UniversityMinskBelarus

Personalised recommendations