Advertisement

Journal of Applied Spectroscopy

, Volume 85, Issue 6, pp 1058–1063 | Cite as

Dynamic Spectrum Extraction Method Based on Absolute Difference Summation and Statistical Theory

  • G. Li
  • H. L. WangEmail author
  • M. Zhou
  • Y. Peng
  • L. Lin
Article
  • 2 Downloads

Dynamic spectrum theory has great importance in the field of noninvasive measurement of blood components. To enhance the computational efficiency and data utilization of the existing extraction methods, this paper proposes a new one based on the absolute difference summation (ADS) and statistical theory. The ADS is used to obtain the eigenvalue from a photoplethysmography (PPG) signal. The statistical method is used to obtain the final dynamic spectrum. The experimental data of PPG signal from 133 volunteers were extracted by the new method and the single-trial (ST) extraction method, and the partial least squares model was used to build the calibration models. Compared with the ST extraction, the new method showed better prediction ability. The correlation coefficient of the prediction set increased from 0.85 to 0.92, and the root mean square error of the prediction decreased from 13.49 to 9.86 g/L, which proved that this method can significantly improve the quality of the dynamic spectrum.

Keywords

noninvasive measurement of blood components photoplethysmography dynamic spectrum absolute difference summation modeling accuracy 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. W. Mcmurdy, G. D. Jay, S. Selim, and G. Crawford, Clin. Chem., 54, 264–272 (2008).CrossRefGoogle Scholar
  2. 2.
    Y. Uwadaira, N. Adachib, A. Ikehatac, and S. Kawanoa, J. Near Infrared Spectrosc., 18, 291–300 (2010).ADSCrossRefGoogle Scholar
  3. 3.
    G. Bertrand, M. Drame, C. Martageix, and C. Kaplan, Blood, 117, 3209–3213 (2011).CrossRefGoogle Scholar
  4. 4.
    H. Wang, H. Q. Xu, L. M. Qu, X. M. Wang, R. H. Wu, X. Z. Gao, Q. L. Jin, and J. Q. Niu, Eur. J. Gastroenterol. Hepatol., 28, 997–1002 (2016).CrossRefGoogle Scholar
  5. 5.
    K. Maruo, M. Tsurugi, J. Chin, and T. Ota, Select. Top. Quantum Electron., 9, 322–330 (2003).CrossRefGoogle Scholar
  6. 6.
    A. Enejder, S. G. Sasic, and M. Feld, J. Biomed. Opt., 10, 885–889 (2005).CrossRefGoogle Scholar
  7. 7.
    K. J. Jeon, S. Kim, K. K. Park, J. Kim, and G. Yoon, J. Biomed. Opt., 7, 45–50 (2002).ADSCrossRefGoogle Scholar
  8. 8.
    J. Kraitl, U. Timm, E. Lewis, and H. Ewald, Proc. SPIE, 7572, 757209 (2010).CrossRefGoogle Scholar
  9. 9.
    Y. Yamakoshi, M. Ogawa, T. Yamakoshi, T. Tamura, and K. Yamakoshi, 31st Annual Int. Conf. IEEE EMBS, Minneapolis, Minnesota, USA, 126–129 (2009).Google Scholar
  10. 10.
    G. Li, Y. L. Liu, L. Lin, and Y. Wang, 3rd Int. Symposium on Instrumentation Science and Technology, August 18–22, Xi'an, China, 3-0875-0880 (2004).Google Scholar
  11. 11.
    G. Li, Y. Wang, Q. X. Li, X. X. Li, L. Lin, and Y. L. Liu, J. Infrared Millimeter Waves, 25, 345–348 (2006).Google Scholar
  12. 12.
    G. Li, Y. L. Liu, L. Lin, and Y. Wang, Opt. Precision Eng., 14, 816–821 (2006).Google Scholar
  13. 13.
    G. Li, H. Q. Wang, Z. Zhao, and L. Lin, Spectrosc. Spectr. Anal., 30, 2385–2389 (2010).Google Scholar
  14. 14.
    L. Lin, Q. R. Zhan, M. Zhou, S. J. Xu, and G. Li, RSC Advances, 6, 113322–113326 (2016).CrossRefGoogle Scholar
  15. 15.
    Y. Yamakoshi, M. Ogawa, T. Yamakoshi, M. Satoh, M. Nogawa, S. Tanaka, T. Tamura, P. Rolfe, and K. Yamakoshi, Int. Conf. IEEE Engineering in Medicine & Biology Society, 2964–2967 (2007).Google Scholar
  16. 16.
    Y. H. Luo, Z. Chen, and X. D. Chen, Opt. Precision Eng., 16, 759–763 (2008).Google Scholar
  17. 17.
    H. Q. Wang, G. Li, Z. Zhao, and L. Lin, Trans. Inst. Measure. Control, 35, 16–24 (2013).CrossRefGoogle Scholar
  18. 18.
    G. Li, X. X. Li, L. Lin, Y. L. Liu, and Y. Wang, Spectrosc. Spectr. Anal., 26, 263–266 (2006).Google Scholar
  19. 19.
    G. Li, Q. X. Li, L. Lin, X. X. Li, Y. Wang, and Y. L. Liu, Spectrosc. Spectr. Anal., 26, 2177–2180 (2006).Google Scholar
  20. 20.
    Y. Wang, G. Li, L. Lin, Y. L. Liu, and X. X. Li, Spectrosc. Spectr. Anal., 27, 91–94 (2007).Google Scholar
  21. 21.
    G. Li, C. Xiong, H. Q. Wang, L. Lin, B. J. Zhang, and Y. Tong, Spectrosc. Spectr. Anal., 31, 1857–1861 (2011).Google Scholar
  22. 22.
    G. Li, M. Zhou, and L. Lin, Opt. Quantum Electron., 46, 691–698 (2014).CrossRefGoogle Scholar
  23. 23.
    W. Q. He, X. X. Li, M. J. Wang, G. Li, and L. Lin, Anal. Methods, 7, 5565–5573 (2015).CrossRefGoogle Scholar
  24. 24.
    G. Li, Y. Wang, L. Lin, Y. L. Liu, X. X. Li, and S. Y. Lu, IEEE Conference Publications-2005 IEEE Engineering in Medicine and Biology 27th Annual Conference, 1960–1963 (2005).Google Scholar
  25. 25.
    I. W. Selesnick, R. G. Baraniuk, and N. C. Kingsbury, IEEE Signal Process. Mag., 22, 123–151 (2005).ADSCrossRefGoogle Scholar
  26. 26.
    Y. Peng, G. Li, M. Zhou, H. L. Wang, and L. Lin, RSC Adv., 7, 11198–11205 (2017).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Tianjin UniversityTianjinChina

Personalised recommendations