Advertisement

Journal of Applied Spectroscopy

, Volume 85, Issue 6, pp 997–1005 | Cite as

Spectral and Luminescent Properties and Morphology of Self-Assembled Nanostructures of an Indotricarbocyanine Dye

  • N. V. BelkoEmail author
  • M. P. Samtsov
  • G. A. Gusakov
  • D. S. Tarasau
  • A. A. Lugovski
  • E. S. Voropay
Article
  • 16 Downloads

Spectral and luminescent properties of an indotricarbocyanine dye are studied in solutions and after deposition on quartz or silicon substrates. It is found that the dye molecules self-assemble in aqueous EtOH solutions to form H*-aggregates. The absorption band of the H*-aggregates shows a hypsochromic shift of 192 nm (5291 cm–1) relative to the absorption maximum of dye monomers (706 nm) and has a full width at half maximum of 21 nm (797 cm–1). The morphology of the H*-aggregates of the indotricarbocyanine dye is studied for the first time. It is found that the aggregates are rod-like species ~10 nm high, 100 nm wide, and several micrometers long. H-aggregates with a fluorescence maximum at 560 nm and Stokes shift of 325 cm–1 in addition to non-fluorescent H*-aggregates form in aqueous EtOH solutions and are nanoparticles with a height of 1–3 nm and lateral dimensions of ~100 nm.

Keywords

polymethine dyes molecular aggregates H*-aggregates spectral and luminescent properties selfassembled nanostructures morphology atomic force microscopy 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. H. Herz, Adv. Colloid Interface Sci., 8, No. 3, 237–298 (1977).Google Scholar
  2. 2.
    R. L. Parton and J. R. Lenhard, J. Org. Chem., 55, No. 3, 49–57 (1990).Google Scholar
  3. 3.
    F. Wuerthner, R. Wortmann, and K. Meerholz, Chem. Phys. Chem., 3, No. 1, 17–31 (2002).Google Scholar
  4. 4.
    O. I. Tolmachev, N. V. Pilipchuk, O. D. Kachkovsky, Yu. L. Slominski, V. Ya. Gayvoronsky, E. V. Shepelyavyy, S. V. Yakunin, and M. S. Brodyn, Dyes Pigm., 74, No. 1, 195–201 (2007).Google Scholar
  5. 5.
    S. Barlow, J. L. Bredas, Yu. A. Getmanenko, R. L. Gieseking, J. M. Hales, H. Kim, S. R. Marder, J. W. Perry, C. Risko, and Y. Zhang, Mater. Horiz., 1, No. 6, 577–581 (2014).Google Scholar
  6. 6.
    Z. Sheng, D. Hu, M. Xue, M. He, P. Gong, and L. Cai, Nano-Micro Lett., 5, No. 3, 145–150 (2013).Google Scholar
  7. 7.
    K. Sano, T. Nakajima, T. Ali, D. W. Bartlett, A. M. Wu, I. Kim, C. H. Paik, P. L. Choyke, and H. Kobayashi, J. Biomed. Opt., 18, No. 10, 103041–1013046 (2013).Google Scholar
  8. 8.
    R. Watanabe, K. Sato, H. Hanaoka, T. Harada, T. Nakajima, I. Kim, C. H. Paik, A. M. Wu, P. L. Choyke, and H. Kobayashi, ACS Med. Chem. Lett., 5, No. 4, 411–415 (2014).Google Scholar
  9. 9.
    A. Yuan, J. Wu, X. Tang, L. Zhao, F. Xu, and Y. Hu, J. Pharm. Sci., 102, No. 1, 6–28 (2013),Google Scholar
  10. 10.
    X. Yi, F. Wang, W. Qin, X. Yang, and J. Yuan, Int. J. Nanomed., 9, 1347–1365 (2014).Google Scholar
  11. 11.
    A. A. Lugovski, M. P. Samtsov, K. N. Kaplevsky, D. Tarasau, E. S. Voropay, P. T. Petrov, and Yu. P. Istomin, J. Photochem. Photobiol., A, 316, 31–36 (2016).Google Scholar
  12. 12.
    R. B. Mujumdar, L. A. Ernst, S. R. Mujumdar, C. J. Lewis, and A. S. Waggoner, Bioconjugate Chem., 4, No. 2, 105–111 (1993).Google Scholar
  13. 13.
    A. Mishra, R. K. Behera, P. K. Behera, B. K. Mishra, and G. B. Behera, Chem. Rev., 100, No. 6, 1973–2012 (2004),Google Scholar
  14. 14.
    D. R. Dietze and R. A. Mathies, J. Phys. Chem. C, 119, No. 18, 9980–9987 (2015).Google Scholar
  15. 15.
    A. A. Ishchenko, Russ. Chem. Rev., 60, No. 8, 865–884 (1991).ADSGoogle Scholar
  16. 16.
    V. I. Yuzhakov, Russ. Chem. Rev., 61, No. 6, 613–628 (1992).ADSGoogle Scholar
  17. 17.
    L. Daehne and E. Biller, Adv. Mater., 10, No. 3, 241–245 (1998).Google Scholar
  18. 18.
    I. A. Struganova, H. Lim, and S. A. Morgan, J. Phys. Chem. B, 106, No. 42, 11047–11050 (2002).Google Scholar
  19. 19.
    A. K. Chibisov, H. Goerner, and T. D. Slavnova, Chem. Phys. Lett., 309, No. 1, 240–245 (2004).ADSGoogle Scholar
  20. 20.
    C. Didraga, A. Pugzlys, P. R. Hania, H. von Berlepsch, K. Duppen, and J. Knoester, J. Phys. Chem. B, 108, 14976–14985 (2004).Google Scholar
  21. 21.
    A. Pugzlys, R. Augulis, P. H. M. van Loosdrecht, C. Didraga, V. A. Malyshev, and J. Knoester, J. Phys. Chem. B, 110, No. 41, 20268–20276 (2006).Google Scholar
  22. 22.
    H. von Berlepsch, S. Kirstein, R. Hania, A. Pugzlys, and C. Boettcher, J. Phys. Chem. B, 11, No. 7, 1701–1711 (2007).Google Scholar
  23. 23.
    B. I. Shapiro, E. A. Belonozhkina, and V. A. Kuz′min, Nanotechnol. Russ., 4, Nos. 1–2, 38–44 (2009).Google Scholar
  24. 24.
    F. C. Spano, J. Am. Chem. Soc., 131, No. 12, 4267–4278 (2009).Google Scholar
  25. 25.
    D. M. Eisele, J. Knoester, S. Kirstein, J. P. Rabe, and D. A. Vanden Bout, Nat. Nanotechnol., 4, No. 10, 658–663 (2009).ADSGoogle Scholar
  26. 26.
    S. J. Khouri and V. Buss, J. Solution Chem., 39, No. 1, 121–130 (2010).Google Scholar
  27. 27.
    F. C. Spano, Acc. Chem. Res., 43, No. 3, 429–439 (2010).Google Scholar
  28. 28.
    F. Wuerthner, T. E. Kaiser, and C. R. Saha-Moeller, Angew. Chem., Int. Ed., 50, No. 15, 3376–3410 (2011).Google Scholar
  29. 29.
    D. M. Eisele, C. W. Cone, E. A. Bloemsma, S. M. Vlaming, C. G. F. van der Kwaak, R. J. Silbey, M. G. Bawendi, J. Knoester, J. P. Rabe, and D. A. Vanden Bout, Nat. Chem., 4, No. 8, 655–662 (2012).Google Scholar
  30. 30.
    H. von Berlepsch and C. Boettcher, Langmuir, 29, No. 16, 4948–4958 (2013).Google Scholar
  31. 31.
    S. Chakraborty, P. Debnath, D. Dey, D. Bhattacharjee, and S. A. Hussain, J. Photochem. Photobiol., A, 93, 57–64 (2014).Google Scholar
  32. 32.
    K. A. Clark, E. L. Krueger, and D. A. Vanden Bout, J. Phys. Chem. C, 118, No. 42, 24325–24334 (2014).Google Scholar
  33. 33.
    N. Sato, T. Fujimura, T. Shimada, T. Tani, and S. Takagi, Tetrahedron Lett., 56, No. 22, 2902–2905 (2015).Google Scholar
  34. 34.
    J. Megow, M. I. S. Roehr, M. Schmidt am Busch, T. Renger, R. Mitric, S. Kirstein, J. P. Rabe, and V. May, Phys. Chem. Chem. Phys., 17, No. 10, 6741–6747 (2015).Google Scholar
  35. 35.
    J. R. Caram, S. Doria, D. M. Eisele, F. S. Freyria, T. S. Sinclair, P. Rebentrost, S. Lloyd, and M. G. Bawendi, Nano Lett., 16, No. 11, 6808–6815 (2016).ADSGoogle Scholar
  36. 36.
    F. Milota, V. I. Prokhorenko, T. Mancal, H. von Berlepsch, O. Bixner, H. F. Kauffmann, and J. Hauer, J. Phys. Chem. A, 117, No. 29, 6007–6014 (2013).Google Scholar
  37. 37.
    H. von Berlepsch and C. Boettcher, J. Phys. Chem. B, 119, No. 35, 11900–11909 (2015).Google Scholar
  38. 38.
    C. Koenigstein, M. N. Spallart, and R. Bauer, Electrochim. Acta, 43, Nos. 16–17, 2435–2445 (1998).Google Scholar
  39. 39.
    M. Kawasaki and T. Sato, J. Phys. Chem. B, 105, No. 4, 796–803 (2001).Google Scholar
  40. 40.
    M. Kawasaki, D. Yoshidome, T. Sato, and M. Iwasaki, J. Electroanal. Chem., 543, No. 1, 1–11 (2003).Google Scholar
  41. 41.
    J. L. Lyon, D. M. Eisele, S. Kirstein, J. P. Rabe, D. A. Vanden Bout, and K. J. Stevenson, J. Phys. Chem. C, 112, No. 4, 1260–1268 (2008).Google Scholar
  42. 42.
    J. L. Lyon, D. M. Eisele, S. Kirstein, J. P. Rabe, D. A. Vanden Bout, and K. J. Stevenson, ECS Trans., 16, No. 28, 77–84 (2009).Google Scholar
  43. 43.
    C. W. Cone, S. Cho, J. L. Lyon, D. M. Eisele, J. P. Rabe, K. J. Stevenson, P. J. Rossky, and D. A. Vanden Bout, J. Phys. Chem. C, 115, No. 30, 14978–14987 (2011).Google Scholar
  44. 44.
    K. Takazawa, Y. Kitahama, and Y. Kimura, Chem. Commun., 20, 2272–2273 (2004).Google Scholar
  45. 45.
    K. Takazawa, Y. Kitahama, Y. Kimura, and G. Kido, Nano Lett., 5, No. 7, 1293–1296 (2005).ADSGoogle Scholar
  46. 46.
    B. J. Walker, A. Dorn, V. Bulovic, and M. G. Bawendi, Nano Lett., 11, No. 7, 2655–2659 (2011).ADSGoogle Scholar
  47. 47.
    Y. Qiao, F. Polzer, H. Kirmse, E. Steeg, S. Kirstein, and J. P. Rabe, J. Mater. Chem. C, 2, No. 43, 9141–9148 (2014).Google Scholar
  48. 48.
    Y. Qiao, F. Polzer, H. Kirmse, E. Steeg, S. Kuehn, S. Friede, S. Kirstein, and J. P. Rabe, ACS Nano, 9, No. 2, 1552–1560 (2015).Google Scholar
  49. 49.
    Y. Qiao, F. Polzer, H. Kirmse, S. Kirstein, and J. P. Rabe, Chem. Commun., 51, No. 60, 11980–11982 (2015).Google Scholar
  50. 50.
    A. Yoshida, N. Uchida, and K. Noritsugu, Langmuir, 25, No. 19, 11802–11807 (2009).Google Scholar
  51. 51.
    K. E. Achyuthan, A. M. Achyuthan, S. M. Brozik, S. M. Dirk, T. R. Lujan, J. M. Romero, and J. C. Harper, Anal. Sci., 28, No. 5, 433–438 (2012).Google Scholar
  52. 52.
    N. A. Toropov, P. S. Parfenov, and T. A. Vartanyan, J. Phys. Chem. C, 118, No. 31, 18010–18014 (2014).Google Scholar
  53. 53.
    R. D. Jansen-van Vuuren, P. C. Deakin, S. Olsen, and P. L. Burn, Dyes Pigm., 101, 1–8 (2014).Google Scholar
  54. 54.
    M. Kawasaki and S. Aoyama, Chem. Commun., 8, 988–989 (2004).Google Scholar
  55. 55.
    X. Ma, J. Hua, W. Wu, Y. Jin, F. Meng, W. Zhan, and H. Tian, Tetrahedron, 64, No. 2, 345–350 (2008).Google Scholar
  56. 56.
    A. N. Jordan, S. Das, N. Siraj, S.L. de Rooy, M. Li, B. El-Zahab, L. Chandler, G. A. Baker, and I. M. Warner, Nanoscale, 4, No. 16, 5031–5038 (2012).ADSGoogle Scholar
  57. 57.
    P. K. D. Duleepa Pitigala, M. M. Henary, E. A. Owens, A. G. UnilPerera, and K. Tennakone, J. Photochem. Photobiol. A, 325, 39–44 (2016).Google Scholar
  58. 58.
    S. Kirstein and S. Daehne, Int. J. Photoenergy, 2006, 203631–203632 (2007).Google Scholar
  59. 59.
    D. M. Eisele, H. von Berlepsch, C. Boettcher, K. J. Stevenson, D. A. Vanden Bout, S. Kirstein, and J. P. Rabe, J. Am. Chem. Soc., 132, No. 7, 2104–2105 (2010).Google Scholar
  60. 60.
    L. I. Markova, V. L. Malinovskii, L. D. Patsenker, and R. Haener, Chem. Commun., 49, No. 46, 5298–5300 (2013).Google Scholar
  61. 61.
    R. L. Gieseking, S. Mukhopadhyay, C. Risko, S. R. Marder, and J. L. Bredas, Adv. Mater., 26, No. 1, 68–84 (2014).Google Scholar
  62. 62.
    J. Yuen-Zhou, D. H. Arias, D. M. Eisele, C. P. Steiner, J. J. Krich, M. G. Bawendi, K. A. Nelson, and A. Aspuru-Guzik, ACS Nano, 8, No. 6, 5527–5534 (2014).Google Scholar
  63. 63.
    E. Steeg, F. Polzer, H. Kirmse, Y. Qiao, J. P. Rabe, and S. Kirstein, J. Colloid Interface Sci., 472, 187–194 (2016).ADSGoogle Scholar
  64. 64.
    E. E. Jelley, Nature, 138, No. 3502, 1009–1010 (1936).ADSGoogle Scholar
  65. 65.
    E. E. Jelley, Nature, 139, No. 3519, 631–632 (1937).ADSGoogle Scholar
  66. 66.
    G. Scheibe, Angew. Chem., 50, No. 11, 212–219 (1937).Google Scholar
  67. 67.
    M. Kasha, H. R. Rawls, and M. Ashraf El-Bayoumi, Pure Appl. Chem., 11, Nos. 3–4, 371–392 (1965).Google Scholar
  68. 68.
    H. Asanuma, K. Shirasuka, T. Takarada, H. Kashida, and M. Komiyama, J. Am. Chem. Soc., 125, No. 8, 2217–2223 (2003).Google Scholar
  69. 69.
    J. Clark, J. F. Chang, F. C. Spano, R. H. Friend, and C. Silva, Appl. Phys. Lett., 94, No. 16, 1633061–1633063 (2009).Google Scholar
  70. 70.
    U. Roesch, S. Yao, R. Wortmann, and F. Wuerthner, Angew. Chem., Int. Ed., 45, No. 42, 7026–7030 (2006).Google Scholar
  71. 71.
    Q. Fang, F. Wang, H. Zhao, X. Liu, R. Tu, D. Wang, and Z. Zhang, J. Phys. Chem. B, 112, No. 10, 2837–2841 (2008).Google Scholar
  72. 72.
    N. Ryu, Y. Okazaki, E. Pouget, M. Takafuji, S. Nagaoka, H. Ihara, and R. Oda, Chem. Commun., 53, No. 63, 8870–8873 (2017).Google Scholar
  73. 73.
    A. V. Ruban, P. Horton, and A. J. Young, J. Photochem. Photobiol., B, 21, Nos. 2–3, 229–234 (1993).Google Scholar
  74. 74.
    N. V. Belko, M. P. Samtsov, G. A. Gusakov, E. S. Voropay, and L. S. Lyashenko, Zh. Prikl. Spektrosk., 83, Spec. Iss. 6-16, 458–459 (2016).Google Scholar
  75. 75.
    E. S. Emerson, M. A. Conlin, A. E. Rosenoff, K. S. Norland, H. Rodriguez, D. Chin, and G. R. Bird, J. Phys. Chem., 71, No. 8, 2396–2403 (1967).Google Scholar
  76. 76.
    C. A. Parker, Photoluminescence of Solutions with Applications to Photochemistry and Analytical Chemistry, Elsevier, New York (1968), 544 pp. [Russian translation, Mir, Moscow (1972), pp. 210–218].Google Scholar
  77. 77.
    V. Sundstrom and T. Gillbro, Chem. Phys., 61, 257–269 (1981).Google Scholar
  78. 78.
    G. E. Walfaren, J. Chem. Phys., 40, No. 11, 3249–3256 (1964).ADSGoogle Scholar
  79. 79.
    V. V. Egorov and M. V. Alfi mov, Usp. Fiz. Nauk, 117, No. 10, 1033–1081 (2007).Google Scholar
  80. 80.
    V. V. Egorov, J. Lumin., 131, No. 3, 543–547 (2011).Google Scholar
  81. 81.
    V. V. Egorov, AIP Adv., 14, No. 7, 0771111–0771119 (2014).Google Scholar
  82. 82.
    V. V. Egorov, R. Soc. Open Sci., 4, No. 5, 160550-1–160550-2 (2017).Google Scholar
  83. 83.
    E. W. Knapp, Chem. Phys., 85, No. 1, 73–82 (1984).Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • N. V. Belko
    • 1
    Email author
  • M. P. Samtsov
    • 1
  • G. A. Gusakov
    • 1
  • D. S. Tarasau
    • 1
  • A. A. Lugovski
    • 1
  • E. S. Voropay
    • 1
  1. 1.A. N. Sevchenko Institute of Applied Physical ProblemsBelarusian State UniversityMinskBelarus

Personalised recommendations