Journal of Applied Spectroscopy

, Volume 85, Issue 6, pp 1013–1016 | Cite as

Angular Dependence of Electronic Excitation Energy Transfer Efficiency Between Dye Molecules in a Photonic Crystal

  • Yu. A. Strokova
  • S. A. Svyakhovskiy
  • A. M. SaletskyEmail author

Spectral and luminescent characteristics of a mixture of coumarin 7 and rhodamine B dyes infiltrated into a onedimensional photonic crystal of mesoporous silicon are studied. Electronic excitation energy transfer between molecules that is associated with fluorescence quenching of the donor (coumarin 7) and enhancement of acceptor emission (rhodamine B) is detected. The angular dependence of excitation energy transfer efficiency in the donor–acceptor pair is due to depletion of available photon modes for donor radiative decay in a photonic crystal as compared with a homogeneous medium and depends on the spectral position of the photonic stop zone of a photonic crystal.


one-dimensional photonic crystal photonic band gap energy transfer dye molecule donor acceptor coumarin 7 rhodamine B 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    K. Ji, H. Chen, W. Zhou, Y. Zhuang, and J. Wang, Zh. Prikl. Spektrosk., 84, No. 5, 767–771 (2017) [K. Ji, H. Chen, W. Zhou, Y. Zhuang, and J. Wang, J. Appl. Spectrosc., 84, 824–828 (2017)].Google Scholar
  2. 2.
    H. Chen, R. Lou, Ya. Chen, L. Chen, J. Lu, and Q. Dong, Drug Delivery, 24, No. 1, 775–780 (2017).Google Scholar
  3. 3.
    B. A. Riyadh, M. Hossain, H. S. Mondal, E. Rahaman, P. K. Mondal, and M. H. Mahasin, J. Biosens. Bioelectron., 9, 251–258 (2018).Google Scholar
  4. 4.
    T.-X. Ma, Y.-S. Wang, and C. Zhang, Phys. Rev. B: Condens. Matter Mater. Phys., 97, 134302 (1–12) (2018).Google Scholar
  5. 5.
    I. V. Nemtsev, I. A. Tambasov, A. A. Ivanenko, and V. Ya. Zyryanov, Photonics Nanostruct. Fundam. Appl., 28, 37–44 (2018).Google Scholar
  6. 6.
    M.-L. Hsieh, P. Kuang, J. A. Bur, S. John, and S.-Y. Lin, AIP Conf. Proc., 1590, 204–209 (2014).ADSCrossRefGoogle Scholar
  7. 7.
    V. S. Gorelik, M. M. Yashin, D. Dongxue, and T. F. Guang, Opt. Spektrosk., 124, 171–177 (2018).Google Scholar
  8. 8.
    A. M. Vyunishev, P. S. Pankin, S. E. Svyakhovskiy, I. V. Timofeev, and S. Ya, Opt. Lett., 42, No. 18, 3602–3605 (2017).ADSCrossRefGoogle Scholar
  9. 9.
    C. Pacholski, Sensors, 13, 4694–4713 (2013).CrossRefGoogle Scholar
  10. 10.
    E. N. Bodunov, Yu. A. Antonov, and A. L. Simoes Gamboa, J. Chem. Phys., 146, 114102 (1–8) (2017).Google Scholar
  11. 11.
    D. V. Bulakov and A. M. Saletsky, Opt. Spektrosk., 104, 423–426 (2008).CrossRefGoogle Scholar
  12. 12.
    V. Z. Pashchenko, N. V. Konovalova, A. L. Bagdashkin, V. V. Gorokhov, V. B. Tusov, and V. I. Yuzhakov, Opt. Spektrosk., 112, 568–577 (2012).Google Scholar
  13. 13.
    Yu. V. Strokurov, S. N. Letuta, S. N. Pashkevich, T. V. Antropova, Yu. A. Gordeeva, and A. M. Saletsky, Opt. Spektrosk., 114, 95–99 (2013).ADSGoogle Scholar
  14. 14.
    D. A. Afanasyev, N. K. Ibrayev, A. M. Saletsky, Y. V. Strokurov, V. M. Gun′ko, and S. V. Mikhalovsky, J. Lumin., 136, 358–364 (2013).Google Scholar
  15. 15.
    Yu. A. Strokova, S. E. Svyakhovskii, and A. M. Saletsky, Opt. Spektrosk., 125, 200–203 (2018).ADSCrossRefGoogle Scholar
  16. 16.
    S. E. Svyakhovskiy, A. I. Maydykovsky, and T. V. Murzina, J. Appl. Phys., 112, 013106 (2012).ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Yu. A. Strokova
    • 1
  • S. A. Svyakhovskiy
    • 1
  • A. M. Saletsky
    • 1
    Email author
  1. 1.M. V. Lomonosov Moscow State UniversityMoscowRussia

Personalised recommendations